File size: 6,584 Bytes
58407db 87fbf2d 58407db 673bd17 58407db 929da13 673bd17 929da13 673bd17 58407db 104be4a 69fa352 58407db 929da13 58407db 87fbf2d 673bd17 929da13 673bd17 58407db 87fbf2d 929da13 58407db 87fbf2d 929da13 58407db 673bd17 929da13 58407db 673bd17 4645ffe 673bd17 f977cc3 673bd17 5109730 673bd17 58407db f977cc3 5109730 58407db 673bd17 17e0100 929da13 4716167 929da13 5109730 929da13 5109730 929da13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import cv2
import numpy as np
import os
import zipfile
import uuid
import gradio as gr
import uuid
def remove_watermark_area(original_image, text_mask_path):
# Ensure the mask is binary
text_mask = cv2.imread(text_mask_path, cv2.IMREAD_GRAYSCALE)
_, binary_mask = cv2.threshold(text_mask, 1, 255, cv2.THRESH_BINARY)
# Resize the mask to match the size of the original image area
mask_resized = cv2.resize(binary_mask, (original_image.shape[1], original_image.shape[0]))
# Expand the mask to cover more area if needed
kernel = np.ones((5, 5), np.uint8)
expanded_mask = cv2.dilate(mask_resized, kernel, iterations=1)
# Inpainting using the mask
inpainted_image = cv2.inpaint(original_image, expanded_mask, inpaintRadius=5, flags=cv2.INPAINT_TELEA)
# Optionally apply post-processing to improve results
cleaned_image = cv2.GaussianBlur(inpainted_image, (3, 3), 0)
return cleaned_image
from PIL import Image
def remove_watermark(image_path,file_type="",saved_path=""):
# file_type="pil"
# file_type="opencv"
# file_type="filepath"
if file_type=="filepath":
# Load the image using OpenCV
image = cv2.imread(image_path)
if file_type=="pil":
image = cv2.cvtColor(image_path, cv2.COLOR_RGB2BGR)
if file_type=="opencv":
image=image_path
# cv2.imwrite("test.jpg",image)
image=cv2.resize(image,(1280,1280))
# Define the area of the watermark (adjust this based on the watermark size)
height, width, _ = image.shape
watermark_width = 185 # Adjust based on your watermark size
watermark_height = 185 # Adjust based on your watermark size
x_start = 50
y_start = height - watermark_height+17
x_end = watermark_width-17
y_end = height-50
# Extract the watermark area
watermark_area = image[y_start:y_end, x_start:x_end]
# cv2.imwrite('watermark_area.jpg', watermark_area)
# Create the mask for the watermark area
# text_mask_path = 'watermark_mask.png'
text_mask_path ='./mask/mask_1.png'
# text_mask_path ='./mask/mask_2.png'
cleaned_image = remove_watermark_area(watermark_area, text_mask_path)
# cv2.imwrite('cleaned_watermark.jpg', cleaned_image)
# Paste back the cleaned watermark on the original image
image[y_start:y_end, x_start:x_end] = cleaned_image
if saved_path=="":
pass
else:
cv2.imwrite(saved_path, image)
return image
def make_zip(image_list):
zip_path = f"./temp/{uuid.uuid4().hex[:6]}.zip"
with zipfile.ZipFile(zip_path, 'w') as zipf:
for image in image_list:
zipf.write(image, os.path.basename(image))
return zip_path
def random_image_name():
"""Generate a random image name."""
return str(uuid.uuid4())[:8]
def process_file(pil_image):
saved_path = f"./temp/{random_image_name()}.jpg"
remove_watermark(pil_image,"pil",saved_path)
return saved_path, saved_path
def process_files(image_files):
image_list = []
if len(image_files) == 1:
# saved_path = os.path.basename(image_files[0])
# saved_path = f"./temp/{saved_path}"
saved_path = f"./temp/{random_image_name()}.jpg"
remove_watermark(image_files[0],"filepath", saved_path)
return saved_path, saved_path
else:
for image_path in image_files:
# saved_path = os.path.basename(image_path)
# saved_path = f"./temp/{saved_path}"
saved_path = f"./temp/{random_image_name()}.jpg"
remove_watermark(image_path,"filepath",saved_path)
image_list.append(saved_path)
zip_path = make_zip(image_list)
return zip_path,None
import cv2
import numpy as np
def process_video(input_video_path):
print(input_video_path)
# output_video_path=""
# if output_video_path=="":
output_video_path=f"./temp/{random_image_name()}.mp4"
cap = cv2.VideoCapture(input_video_path)
if not cap.isOpened():
raise ValueError(f"Unable to open video file {input_video_path}")
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Create VideoWriter object for output video
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # You might try 'XVID' or 'H264' if issues persist
video_writer = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
# Process frames
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
no_watermark_frame=remove_watermark(frame,"opencv")
# Ensure the frame has the same size and type
if no_watermark_frame.shape[1] != width or no_watermark_frame.shape[0] != height:
no_watermark_frame = cv2.resize(no_watermark_frame, (width, height))
video_writer.write(no_watermark_frame)
cap.release()
video_writer.release()
return output_video_path,output_video_path
if not os.path.exists("./temp"):
os.mkdir("./temp")
meta_examples = ["./images/7.jpg","./images/6.jpg","./images/1.jpg", "./images/2.jpg", "./images/3.jpg", "./images/4.jpg", "./images/5.jpg"]
gradio_input=[gr.Image(label='Upload an Image')]
gradio_Output=[gr.File(label='Download Image'),gr.Image(label='Display Image')]
gradio_interface = gr.Interface(fn=process_file, inputs=gradio_input,outputs=gradio_Output ,
title="Meta Watermark Remover For Image",
examples=meta_examples)
# gradio_interface.launch(debug=True)
gradio_multiple_images = gr.Interface(
process_files,
[gr.File(type='filepath', file_count='multiple',label='Upload Images')],
[gr.File(label='Download File'),gr.Image(label='Display Image')],
title='Meta Watermark Remover For Bulk Images',
cache_examples=True
)
meta_video_examples = [ "./videos/2.mp4","./videos/1.mp4"]
gradio_video_input=[gr.Video(label='Upload Video')]
gradio_video_Output=[gr.File(label='Download Video'),gr.Video(label='Display Video')]
gradio_video_interface = gr.Interface(fn=process_video, inputs=gradio_video_input,outputs=gradio_video_Output ,
title="Meta Watermark Remover For Video",
examples=meta_video_examples)
demo = gr.TabbedInterface([gradio_interface, gradio_video_interface,gradio_multiple_images], ["Meta Watermark Remover For Image","Meta Watermark Remover For Video","Meta Watermark Remover For Bulk Images"],title="Meta Watermark Remover")
demo.launch(debug=True)
|