NeuralFalcon
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -26,11 +26,26 @@ def remove_watermark_area(original_image, text_mask_path):
|
|
26 |
cleaned_image = cv2.GaussianBlur(inpainted_image, (3, 3), 0)
|
27 |
|
28 |
return cleaned_image
|
|
|
29 |
|
30 |
def remove_watermark(image_path,saved_path):
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Define the area of the watermark (adjust this based on the watermark size)
|
35 |
height, width, _ = image.shape
|
36 |
watermark_width = 185 # Adjust based on your watermark size
|
@@ -65,6 +80,12 @@ def random_image_name():
|
|
65 |
return str(uuid.uuid4())[:8]
|
66 |
|
67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
def process_files(image_files):
|
69 |
image_list = []
|
70 |
if len(image_files) == 1:
|
@@ -83,14 +104,29 @@ def process_files(image_files):
|
|
83 |
zip_path = make_zip(image_list)
|
84 |
return zip_path,None
|
85 |
|
|
|
86 |
if not os.path.exists("./temp"):
|
87 |
os.mkdir("./temp")
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
process_files,
|
91 |
[gr.File(type='filepath', file_count='multiple')],
|
92 |
[gr.File(),gr.Image()],
|
93 |
cache_examples=True
|
94 |
)
|
95 |
|
|
|
96 |
demo.launch(debug=True)
|
|
|
|
26 |
cleaned_image = cv2.GaussianBlur(inpainted_image, (3, 3), 0)
|
27 |
|
28 |
return cleaned_image
|
29 |
+
from PIL import Image
|
30 |
|
31 |
def remove_watermark(image_path,saved_path):
|
32 |
+
if isinstance(image_path, str) and os.path.isfile(image_path):
|
33 |
+
# Load the image using OpenCV
|
34 |
+
image = cv2.imread(image_path)
|
35 |
+
elif isinstance(image_path, np.ndarray):
|
36 |
+
# Directly use OpenCV image (NumPy array)
|
37 |
+
image = image_path
|
38 |
+
if len(image_path.shape) == 3 and image_path.shape[2] == 3:
|
39 |
+
# Assuming it's in RGB format; convert to BGR
|
40 |
+
image = cv2.cvtColor(image_path, cv2.COLOR_RGB2BGR)
|
41 |
+
else:
|
42 |
+
# Otherwise, assume it's already in BGR format
|
43 |
+
image = image_path
|
44 |
+
else:
|
45 |
+
raise TypeError("Invalid image_path format")
|
46 |
+
print(type(image))
|
47 |
+
cv2.imwrite("test.jpg",image)
|
48 |
+
image=cv2.resize(image,(1280,1280))
|
49 |
# Define the area of the watermark (adjust this based on the watermark size)
|
50 |
height, width, _ = image.shape
|
51 |
watermark_width = 185 # Adjust based on your watermark size
|
|
|
80 |
return str(uuid.uuid4())[:8]
|
81 |
|
82 |
|
83 |
+
def process_file(pil_image):
|
84 |
+
saved_path = f"./temp/{random_image_name()}.jpg"
|
85 |
+
remove_watermark(pil_image, saved_path)
|
86 |
+
return saved_path, saved_path
|
87 |
+
|
88 |
+
|
89 |
def process_files(image_files):
|
90 |
image_list = []
|
91 |
if len(image_files) == 1:
|
|
|
104 |
zip_path = make_zip(image_list)
|
105 |
return zip_path,None
|
106 |
|
107 |
+
|
108 |
if not os.path.exists("./temp"):
|
109 |
os.mkdir("./temp")
|
110 |
|
111 |
+
|
112 |
+
meta_examples = ["./images/1.jpg", "./images/2.jpg", "./images/3.jpg", "./images/4.jpg", "./images/5.jpg", "./images/6.jpg"]
|
113 |
+
|
114 |
+
gradio_input=[gr.Image()]
|
115 |
+
gradio_Output=[gr.File(),gr.Image()]
|
116 |
+
gradio_interface = gr.Interface(fn=process_file, inputs=gradio_input,outputs=gradio_Output ,
|
117 |
+
title="Meta Watermark Remover",
|
118 |
+
examples=meta_examples)
|
119 |
+
# gradio_interface.launch(debug=True)
|
120 |
+
|
121 |
+
|
122 |
+
|
123 |
+
gradio_multiple_images = gr.Interface(
|
124 |
process_files,
|
125 |
[gr.File(type='filepath', file_count='multiple')],
|
126 |
[gr.File(),gr.Image()],
|
127 |
cache_examples=True
|
128 |
)
|
129 |
|
130 |
+
demo = gr.TabbedInterface([gradio_interface, gradio_multiple_images], ["Meta Watermark Remover","Bluk Meta Watermark Remover"],title="Meta Watermark Remover")
|
131 |
demo.launch(debug=True)
|
132 |
+
|