CTP_Project / app.py
HassanDataSci's picture
Create app.py
04f475a verified
raw
history blame
1.16 kB
import streamlit as st
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
# Load the model and processor
st.title("Food Image Classification with Hugging Face")
st.write("Upload an image to classify the type of food!")
# Load the model
@st.cache_resource
def load_pipeline():
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe = load_pipeline()
# Upload image
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Classifying...")
# Make predictions
predictions = pipe(image)
# Display top prediction
st.subheader("Top Prediction")
st.write(f"**{predictions[0]['label']}** with confidence {predictions[0]['score']:.2f}")
# Display other predictions
st.subheader("Other Predictions")
for pred in predictions[1:]:
st.write(f"{pred['label']}: {pred['score']:.2f}")