Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline, AutoImageProcessor, AutoModelForImageClassification | |
from PIL import Image | |
import requests | |
# Load the model and processor | |
st.title("Food Image Classification with Hugging Face") | |
st.write("Upload an image to classify the type of food!") | |
# Load the model | |
def load_pipeline(): | |
return pipeline("image-classification", model="Shresthadev403/food-image-classification") | |
pipe = load_pipeline() | |
# Upload image | |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"]) | |
if uploaded_file is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
st.write("Classifying...") | |
# Make predictions | |
predictions = pipe(image) | |
# Display top prediction | |
st.subheader("Top Prediction") | |
st.write(f"**{predictions[0]['label']}** with confidence {predictions[0]['score']:.2f}") | |
# Display other predictions | |
st.subheader("Other Predictions") | |
for pred in predictions[1:]: | |
st.write(f"{pred['label']}: {pred['score']:.2f}") |