|
from dataclasses import dataclass, make_dataclass, field |
|
from enum import Enum |
|
|
|
import pandas as pd |
|
|
|
from src.about import Tasks, Domains |
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
|
|
|
|
|
|
@dataclass |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
|
|
|
|
auto_eval_column_dict = [] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
auto_eval_column_dict.append(["model", ColumnContent, field(default_factory=lambda: ColumnContent("Model", "markdown", True, never_hidden=True))]) |
|
auto_eval_column_dict.append(["license", ColumnContent, field(default_factory=lambda: ColumnContent("License", "str", False))]) |
|
|
|
|
|
for domain in Domains: |
|
auto_eval_column_dict.append([domain.name, ColumnContent, field(default_factory=lambda: ColumnContent(domain.value.col_name, "number", True))]) |
|
|
|
auto_eval_column_dict.append(["organization", ColumnContent, field(default_factory=lambda: ColumnContent("Organization", "str", False))]) |
|
auto_eval_column_dict.append(["knowledge_cutoff", ColumnContent, field(default_factory=lambda: ColumnContent("Knowledge cutoff", "str", False))]) |
|
auto_eval_column_dict.append(["score", ColumnContent, field(default_factory=lambda: ColumnContent("Average Score", "number", True))]) |
|
auto_eval_column_dict.append(["score_sd", ColumnContent, field(default_factory=lambda: ColumnContent("Score SD", "number", True))]) |
|
auto_eval_column_dict.append(["rank", ColumnContent, field(default_factory=lambda: ColumnContent("Rank", "number", True))]) |
|
|
|
|
|
auto_eval_column_dict.append(["score_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Overall)", "number", True))]) |
|
auto_eval_column_dict.append(["score_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Math Algebra)", "number", True))]) |
|
auto_eval_column_dict.append(["score_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Math Geometry)", "number", True))]) |
|
auto_eval_column_dict.append(["score_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Math Probability)", "number", True))]) |
|
auto_eval_column_dict.append(["score_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Logical Reasoning)", "number", True))]) |
|
auto_eval_column_dict.append(["score_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Social Reasoning)", "number", True))]) |
|
|
|
auto_eval_column_dict.append(["sd_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev(Overall)", "number", True))]) |
|
auto_eval_column_dict.append(["sd_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Math Algebra)", "number", True))]) |
|
auto_eval_column_dict.append(["sd_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Math Geometry)", "number", True))]) |
|
auto_eval_column_dict.append(["sd_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Math Probability)", "number", True))]) |
|
auto_eval_column_dict.append(["sd_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Logical Reasoning)", "number", True))]) |
|
auto_eval_column_dict.append(["sd_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Social Reasoning)", "number", True))]) |
|
|
|
auto_eval_column_dict.append(["rank_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Overall)", "number", True))]) |
|
auto_eval_column_dict.append(["rank_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Math Algebra)", "number", True))]) |
|
auto_eval_column_dict.append(["rank_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Math Geometry)", "number", True))]) |
|
auto_eval_column_dict.append(["rank_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Math Probability)", "number", True))]) |
|
auto_eval_column_dict.append(["rank_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Logical Reasoning)", "number", True))]) |
|
auto_eval_column_dict.append(["rank_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Social Reasoning)", "number", True))]) |
|
|
|
auto_eval_column_dict.append(["score_chemistry", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Chemistry)", "number", True))]) |
|
auto_eval_column_dict.append(["sd_chemistry", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Chemistry)", "number", True))]) |
|
auto_eval_column_dict.append(["rank_chemistry", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Chemistry)", "number", True))]) |
|
|
|
for task in Tasks: |
|
auto_eval_column_dict.append([task.name, ColumnContent, field(default_factory=lambda: ColumnContent(task.value.col_name, "number", True))]) |
|
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, field(default_factory=lambda: ColumnContent("T", "str", True, never_hidden=True))]) |
|
|
|
auto_eval_column_dict.append(["average", ColumnContent, field(default_factory=lambda: ColumnContent("Average ⬆️", "number", True))]) |
|
|
|
auto_eval_column_dict.append(["model_type", ColumnContent, field(default_factory=lambda: ColumnContent("Type", "str", False))]) |
|
auto_eval_column_dict.append(["architecture", ColumnContent, field(default_factory=lambda: ColumnContent("Architecture", "str", False))]) |
|
auto_eval_column_dict.append(["weight_type", ColumnContent, field(default_factory=lambda: ColumnContent("Weight type", "str", False, True))]) |
|
auto_eval_column_dict.append(["precision", ColumnContent, field(default_factory=lambda: ColumnContent("Precision", "str", False))]) |
|
auto_eval_column_dict.append(["params", ColumnContent, field(default_factory=lambda: ColumnContent("#Params (B)", "number", False))]) |
|
auto_eval_column_dict.append(["likes", ColumnContent, field(default_factory=lambda: ColumnContent("Hub ❤️", "number", False))]) |
|
auto_eval_column_dict.append(["still_on_hub", ColumnContent, field(default_factory=lambda: ColumnContent("Available on the hub", "bool", False))]) |
|
auto_eval_column_dict.append(["revision", ColumnContent, field(default_factory=lambda: ColumnContent("Model sha", "str", False, False))]) |
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
AutoEvalColumn = AutoEvalColumn() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model = ColumnContent("model", "markdown", True) |
|
revision = ColumnContent("revision", "str", True) |
|
private = ColumnContent("private", "bool", True) |
|
precision = ColumnContent("precision", "str", True) |
|
weight_type = ColumnContent("weight_type", "str", "Original") |
|
status = ColumnContent("status", "str", True) |
|
|
|
|
|
@dataclass |
|
class ModelDetails: |
|
name: str |
|
display_name: str = "" |
|
symbol: str = "" |
|
|
|
|
|
class ModelType(Enum): |
|
PT = ModelDetails(name="pretrained", symbol="🟢") |
|
FT = ModelDetails(name="fine-tuned", symbol="🔶") |
|
IFT = ModelDetails(name="instruction-tuned", symbol="⭕") |
|
RL = ModelDetails(name="RL-tuned", symbol="🟦") |
|
Unknown = ModelDetails(name="", symbol="?") |
|
|
|
def to_str(self, separator=" "): |
|
return f"{self.value.symbol}{separator}{self.value.name}" |
|
|
|
@staticmethod |
|
def from_str(type): |
|
if "fine-tuned" in type or "🔶" in type: |
|
return ModelType.FT |
|
if "pretrained" in type or "🟢" in type: |
|
return ModelType.PT |
|
if "RL-tuned" in type or "🟦" in type: |
|
return ModelType.RL |
|
if "instruction-tuned" in type or "⭕" in type: |
|
return ModelType.IFT |
|
return ModelType.Unknown |
|
|
|
class WeightType(Enum): |
|
Adapter = ModelDetails("Adapter") |
|
Original = ModelDetails("Original") |
|
Delta = ModelDetails("Delta") |
|
|
|
class Precision(Enum): |
|
float16 = ModelDetails("float16") |
|
bfloat16 = ModelDetails("bfloat16") |
|
Unknown = ModelDetails("?") |
|
|
|
def from_str(precision): |
|
if precision in ["torch.float16", "float16"]: |
|
return Precision.float16 |
|
if precision in ["torch.bfloat16", "bfloat16"]: |
|
return Precision.bfloat16 |
|
return Precision.Unknown |
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] |
|
|
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
BENCHMARK_COLS = [t.value.col_name for t in Tasks] |
|
|
|
|