File size: 11,021 Bytes
bfb3ae7 da92625 bfb3ae7 da92625 bfb3ae7 da92625 bfb3ae7 826f447 bfb3ae7 826f447 bbcf980 74f7f31 4575ae2 37b3751 74f7f31 bfb3ae7 da92625 bfb3ae7 da92625 bfb3ae7 da92625 d4a35ea bfb3ae7 b47be80 bfb3ae7 b47be80 bfb3ae7 da92625 b47be80 da92625 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from dataclasses import dataclass, make_dataclass, field
from enum import Enum
import pandas as pd
from src.about import Tasks, Domains
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# # Init
# auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
# auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
# # new columns
# for domain in Domains:
# auto_eval_column_dict.append([domain.name, ColumnContent, ColumnContent(domain.value.col_name, "number", True)])
# auto_eval_column_dict.append(["organization", ColumnContent, ColumnContent("Organization", "str", False)])
# auto_eval_column_dict.append(["knowledge_cutoff", ColumnContent, ColumnContent("Knowledge cutoff", "str", False)])
# for task in Tasks:
# auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
# auto_eval_column_dict.append(["model_type_symbol", ColumnContent, field(default_factory=lambda: ColumnContent("T", "str", True, never_hidden=True))])
# #Scores
# auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
# # Model information
# auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
# auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
# auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
# auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
# auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
# auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
# auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
# auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# Init
auto_eval_column_dict.append(["model", ColumnContent, field(default_factory=lambda: ColumnContent("Model", "markdown", True, never_hidden=True))])
auto_eval_column_dict.append(["license", ColumnContent, field(default_factory=lambda: ColumnContent("License", "str", False))])
# new columns
for domain in Domains:
auto_eval_column_dict.append([domain.name, ColumnContent, field(default_factory=lambda: ColumnContent(domain.value.col_name, "number", True))])
auto_eval_column_dict.append(["organization", ColumnContent, field(default_factory=lambda: ColumnContent("Organization", "str", False))])
auto_eval_column_dict.append(["knowledge_cutoff", ColumnContent, field(default_factory=lambda: ColumnContent("Knowledge cutoff", "str", False))])
auto_eval_column_dict.append(["score", ColumnContent, field(default_factory=lambda: ColumnContent("Average Score", "number", True))])
auto_eval_column_dict.append(["score_sd", ColumnContent, field(default_factory=lambda: ColumnContent("Score SD", "number", True))])
auto_eval_column_dict.append(["rank", ColumnContent, field(default_factory=lambda: ColumnContent("Rank", "number", True))])
# fine-grained dimensions
auto_eval_column_dict.append(["score_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Overall)", "number", True))])
auto_eval_column_dict.append(["score_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Math Algebra)", "number", True))])
auto_eval_column_dict.append(["score_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Math Geometry)", "number", True))])
auto_eval_column_dict.append(["score_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Math Probability)", "number", True))])
auto_eval_column_dict.append(["score_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Logical Reasoning)", "number", True))])
auto_eval_column_dict.append(["score_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Social Reasoning)", "number", True))])
auto_eval_column_dict.append(["sd_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev(Overall)", "number", True))])
auto_eval_column_dict.append(["sd_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Math Algebra)", "number", True))])
auto_eval_column_dict.append(["sd_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Math Geometry)", "number", True))])
auto_eval_column_dict.append(["sd_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Math Probability)", "number", True))])
auto_eval_column_dict.append(["sd_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Logical Reasoning)", "number", True))])
auto_eval_column_dict.append(["sd_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Social Reasoning)", "number", True))])
auto_eval_column_dict.append(["rank_overall", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Overall)", "number", True))])
auto_eval_column_dict.append(["rank_math_algebra", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Math Algebra)", "number", True))])
auto_eval_column_dict.append(["rank_math_geometry", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Math Geometry)", "number", True))])
auto_eval_column_dict.append(["rank_math_probability", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Math Probability)", "number", True))])
auto_eval_column_dict.append(["rank_reason_logical", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Logical Reasoning)", "number", True))])
auto_eval_column_dict.append(["rank_reason_social", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Social Reasoning)", "number", True))])
auto_eval_column_dict.append(["score_chemistry", ColumnContent, field(default_factory=lambda: ColumnContent("Score (Chemistry)", "number", True))])
auto_eval_column_dict.append(["sd_chemistry", ColumnContent, field(default_factory=lambda: ColumnContent("Std dev (Chemistry)", "number", True))])
auto_eval_column_dict.append(["rank_chemistry", ColumnContent, field(default_factory=lambda: ColumnContent("Rank (Chemistry)", "number", True))])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, field(default_factory=lambda: ColumnContent(task.value.col_name, "number", True))])
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, field(default_factory=lambda: ColumnContent("T", "str", True, never_hidden=True))])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, field(default_factory=lambda: ColumnContent("Average ⬆️", "number", True))])
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, field(default_factory=lambda: ColumnContent("Type", "str", False))])
auto_eval_column_dict.append(["architecture", ColumnContent, field(default_factory=lambda: ColumnContent("Architecture", "str", False))])
auto_eval_column_dict.append(["weight_type", ColumnContent, field(default_factory=lambda: ColumnContent("Weight type", "str", False, True))])
auto_eval_column_dict.append(["precision", ColumnContent, field(default_factory=lambda: ColumnContent("Precision", "str", False))])
auto_eval_column_dict.append(["params", ColumnContent, field(default_factory=lambda: ColumnContent("#Params (B)", "number", False))])
auto_eval_column_dict.append(["likes", ColumnContent, field(default_factory=lambda: ColumnContent("Hub ❤️", "number", False))])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, field(default_factory=lambda: ColumnContent("Available on the hub", "bool", False))])
auto_eval_column_dict.append(["revision", ColumnContent, field(default_factory=lambda: ColumnContent("Model sha", "str", False, False))])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
AutoEvalColumn = AutoEvalColumn()
# print all attributes of AutoEvalColumn
# print(AutoEvalColumn.__annotations__.keys())
# preint precision attribute
# print(AutoEvalColumn.precision)
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "⭕" in type:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
# print(COLS)
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]
|