File size: 12,936 Bytes
ced0ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f82aab
ced0ab7
 
 
9f82aab
ced0ab7
 
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f82aab
ced0ab7
 
 
9f82aab
ced0ab7
 
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f82aab
ced0ab7
 
 
9f82aab
ced0ab7
 
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f82aab
 
ced0ab7
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
9f82aab
ced0ab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import pandas as pd
import numpy as np
import os
import csv
import math

def sub_consist_attr(model,high=15,low=1):
    
    color_indices = [1, 2, 3, 4, 5, 6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,57,58,59,63,65,68,70,71,73,75,76,77,78,79,80,81,83,98,99]  
    color_indices += list(range(101, 161)) 
    shape_indices = [64,22,23,24,25,26,27,28,29,30,31,32,33,34,35,72,74,84,85,86,87,92,94,95,100] + [161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175]  # 161-175
    texture_indices = [36,37,38,39,40,41,42,43,44,45,46,47,48,60,61,62,69,82,88,89,90,91,93,96,97] + list(range(176, 191))  # 176-190
    human_indices = [49,50,51,52,53,54,55,56,66,67] + list(range(191, 201))  # 191-200
    

    interval = high - low
    score = []
    df = pd.read_csv(model)  
    total_videos = df.shape[0] - 1
    
    color = []
    for i in color_indices:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                color.append((s-low)/interval)
                
    shape = []
    for i in shape_indices:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                shape.append((s-low)/interval)
    texture = []
    for i in texture_indices:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                texture.append((s-low)/interval)
                
    
    color_score = "{:.4f}".format(sum(color)/len(color))
    shape_score = "{:.4f}".format(sum(shape)/len(shape))
    texture_score = "{:.4f}".format(sum(texture)/len(texture))
    
    print(model)
    print(len(color),len(shape),len(texture))
    print(color_score, shape_score, texture_score)

    return color_score, shape_score, texture_score




def sub_action(model,high=10,low=1):
    
    common_ind = list(range(1, 23)) + list(range(46, 101)) + list(range(101,184)) 
    uncommon_ind = list(range(23, 46)) + list(range(184,201))
    

    interval = high - low
    score = []
    df = pd.read_csv(model)  
    total_videos = df.shape[0] - 1
    
    common = []
    for i in common_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                common.append((s-low)/interval)
                
    uncommon = []
    for i in uncommon_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                uncommon.append((s-low)/interval)
   
    
    common_score = "{:.4f}".format(sum(common)/len(common))
    uncommon_score = "{:.4f}".format(sum(uncommon)/len(uncommon))
   
    print(model)
    print(len(common),len(uncommon))
    print(common_score,uncommon_score)

    return common_score,uncommon_score


def sub_interaction(model,high=10,low=1):
    
    physical_ind = list(range(1, 50)) + list(range(101, 152)) 
    social_ind = list(range(50, 101)) + list(range(152,201))

    interval = high - low
    score = []
    df = pd.read_csv(model)  
    total_videos = df.shape[0] - 1
    
    physical = []
    for i in physical_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                physical.append((s-low)/interval)
                
    social = []
    for i in social_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                social.append((s-low)/interval)
    
                
    
    physical_score = "{:.4f}".format(sum(physical)/len(physical))
    social_score = "{:.4f}".format(sum(social)/len(social))
    
    
    print(model)
    print(len(physical),len(social))
    print(physical_score, social_score)

    return physical_score, social_score



def sub_spatial(model):
 
    
    left_ind = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 88, 89, 90, 91, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 181, 182, 183, 184]  # Example indices; replace with your actual indices
    right_ind = [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 92, 93, 94, 95, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 185, 186, 187, 188]
    above_ind = [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 189, 190, 191]
    below_ind = [96, 97, 98, 99, 100, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 126, 192, 193, 194]
    front_ind = [58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 195, 196, 197]
    behind_ind = [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 198, 199, 200]


    record = {}
    df = pd.read_csv(model)  # Replace with your CSV file path
    total_videos = df.shape[0] - 1
    
    scores = df.iloc[:, -1].tolist()
    scores = scores[:200]
    
    left = []
    for i in left_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                left.append(s)
    right = []
    for i in right_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                right.append(s)
                
    above = []
    for i in above_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                above.append(s)
    below = []
    for i in below_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                below.append(s)
    
    front = []
    for i in front_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                front.append(s)
    behind = []
    for i in behind_ind:
        for j in range(total_videos):
            if df.iloc[j, 0][:4] == f"{i:04d}":
                s = float(df.iloc[j, -1])
                behind.append(s)            

    
    all_spatial = [left,right,above,below,front,behind]
    
    for i,left in enumerate(all_spatial):
        count_ge_0_4 = 0  # Count of scores >= 0.4
        count_gt_0_4 = 0  # Count of scores > 0.4
        count_eq_0_4 = 0  # Count of scores == 0.4

        # Count the scores based on the conditions
        scores_gt_0_4 = []
        for s in left:
            if round(s,4) >= 0.4:
                count_ge_0_4 += 1
            if round(s,4) > 0.4:
                count_gt_0_4 += 1
                scores_gt_0_4.append(s)
            if round(s,4) == 0.4:
                count_eq_0_4 += 1

        ge_percent = count_ge_0_4 / len(left) #Comp
        gt_percent = count_gt_0_4 / count_ge_0_4 #Acc.
        gt_avg = sum(scores_gt_0_4) / len(scores_gt_0_4)#Acc. Score
        eq_percent = count_eq_0_4 / count_ge_0_4
        record[f"#{i+1}"] = [ge_percent,gt_percent,gt_avg,eq_percent,count_ge_0_4,count_gt_0_4,scores_gt_0_4,count_eq_0_4]
       
    ########################################################################################################################
    left_count_ge_0_4 = record["#1"][4]
    left_count_gt_0_4 = record["#1"][5]
    left_scores_gt_0_4 = record["#1"][6]
    
    right_count_ge_0_4 = record["#2"][4]
    right_count_gt_0_4 = record["#2"][5]
    right_scores_gt_0_4 = record["#2"][6]

    left_right_ge_percent = (left_count_ge_0_4+right_count_ge_0_4) / (len(left)+len(right))
    left_right_gt_percent = (left_count_gt_0_4+right_count_gt_0_4)/(left_count_ge_0_4+right_count_ge_0_4)
    left_right_gt_avg = (sum(left_scores_gt_0_4)+sum(right_scores_gt_0_4)) / (left_count_gt_0_4+right_count_gt_0_4)
    
    record["left_right"] = [round(left_right_ge_percent,4),round(left_right_gt_percent,4),round(left_right_gt_avg,4)]

    ########################################################################################################################
    
    above_count_ge_0_4 = record["#3"][4]
    above_count_gt_0_4 = record["#3"][5]
    above_scores_gt_0_4 = record["#3"][6]
    
    below_count_ge_0_4 = record["#4"][4]
    below_count_gt_0_4 = record["#4"][5]
    below_scores_gt_0_4 = record["#4"][6]
    
    _2d_ge_percent = (left_count_ge_0_4 + right_count_ge_0_4 + above_count_ge_0_4 + below_count_ge_0_4) / (len(left)+len(right)+len(above)+len(below))
    _2d_gt_percent = (left_count_gt_0_4 + right_count_gt_0_4 + above_count_gt_0_4 + below_count_gt_0_4)/(left_count_ge_0_4 + right_count_ge_0_4 + above_count_ge_0_4 + below_count_ge_0_4)
    _2d_gt_avg = (sum(left_scores_gt_0_4) + sum(right_scores_gt_0_4) + sum(above_scores_gt_0_4) + sum(below_scores_gt_0_4)) / (left_count_gt_0_4 + right_count_gt_0_4 + above_count_gt_0_4 + below_count_gt_0_4)
    
    record["2d"] = [f"{_2d_ge_percent:.0%}",f"{_2d_gt_percent:.0%}",round(_2d_gt_avg,4)]
    
    ########################################################################################################################
    front_count_ge_0_4 = record["#5"][4]
    front_count_gt_0_4 = record["#5"][5]
    front_scores_gt_0_4 = record["#5"][6]
    
    behind_count_ge_0_4 = record["#6"][4]
    behind_count_gt_0_4 = record["#6"][5]
    behind_scores_gt_0_4 = record["#6"][6]
    

    _3d_ge_percent = (front_count_ge_0_4+behind_count_ge_0_4) / (len(front)+len(behind))
    _3d_gt_percent = (front_count_gt_0_4+behind_count_gt_0_4)/(front_count_ge_0_4+behind_count_ge_0_4)
    _3d_gt_avg = (sum(front_scores_gt_0_4)+sum(behind_scores_gt_0_4)) / (front_count_gt_0_4+behind_count_gt_0_4)
    
    
    record["3d"] = [round(_3d_ge_percent,4),round(_3d_gt_percent,4),round(_3d_gt_avg,4)]  
    
    
    print(model)
    print(len(left),len(right),len(above),len(below))
    print(record["2d"])
    coexist = record["2d"][0]
    acc = record["2d"][1]
    acc_score = record["2d"][2]
    
    return coexist, acc, acc_score
    
    
    
    
def object_score(obj1_net_left,left_thresh,obj1_net_up,up_thresh,d_1):

    correct_direction = False
    
    W = 856
    H = 480
    
    score_tmp = 0
    obj1_net_left = float(obj1_net_left)*100/W #normalize, map: 100x100
    obj1_net_up = float(obj1_net_up)*100/H
    net_distance = math.sqrt(obj1_net_left**2+obj1_net_up**2)
    
    if d_1 == "left":
        if obj1_net_left>left_thresh:
            correct_direction = True
            
    elif d_1 == "right":
        if obj1_net_left<-left_thresh:
            correct_direction = True
    
    elif d_1 == "up":
        if obj1_net_up>up_thresh:
            correct_direction = True
     
    elif d_1 == "down":
        if obj1_net_up<-up_thresh:
            correct_direction = True
   
    else:
        print("direction not in [left, right, up, down]")
        
    return correct_direction,net_distance
    
    
    
def sub_motion(model): 

    #mid point y:240, x:428  height = 480, width = 856
    left_thresh = 5 #5%
    up_thresh = 5 #5%

    distance = []
    direction = []

    with open(model, 'r') as file1:
        reader1 = csv.reader(file1)
        lines = list(reader1)
        vid_num = (len(lines)-1)//2
        for i in range(vid_num):
            id = lines[i*2+1][0]
            d_1 = lines[i*2+1][3]
            d_2 = lines[i*2+2][5]
            obj1 = lines[i*2+1][2]
            obj2 = lines[i*2+2][4]
            obj1_net_left = lines[i*2+1][6]
            obj1_net_up = lines[i*2+1][7]
            obj2_net_left = lines[i*2+2][6]
            obj2_net_up = lines[i*2+2][7]
            correct_direction = False
            score_tmp = 0
            
            if d_1!="" and d_2=="": #only 1 object
                if obj1_net_left != "": #1 object detected  Comp
                    correct_direction,net_distance = object_score(obj1_net_left,left_thresh,obj1_net_up,up_thresh,d_1)
                    distance.append(net_distance)
                    direction.append(correct_direction) # true false
        
        motion_level = sum(distance)/len(distance)
        acc = sum(direction)/len(direction)   
        
        print(model)
        print(len(distance)) #< 165
        print(len(direction))   
        print(round(motion_level,2), f"{acc:.0%}",)  
        

    return round(motion_level,2), f"{acc:.0%}"
    

def read_score(model):
    with open(model, 'r') as file:
        reader = csv.reader(file)
        lines = list(reader)
        
        if lines[-1][0]=="score: " or lines[-1][0]=="Score: ":
            score = float(lines[-1][-1])
        else:
            return "No score found"
    return round(score,4)