Kaiyue commited on
Commit
9f82aab
·
verified ·
1 Parent(s): 1ff47a0

Update draw_sub_dimension.py

Browse files
Files changed (1) hide show
  1. draw_sub_dimension.py +18 -17
draw_sub_dimension.py CHANGED
@@ -16,23 +16,24 @@ def sub_consist_attr(model,high=15,low=1):
16
  interval = high - low
17
  score = []
18
  df = pd.read_csv(model)
 
19
 
20
  color = []
21
  for i in color_indices:
22
- for j in range(200):
23
  if df.iloc[j, 0][:4] == f"{i:04d}":
24
  s = float(df.iloc[j, -1])
25
  color.append((s-low)/interval)
26
 
27
  shape = []
28
  for i in shape_indices:
29
- for j in range(200):
30
  if df.iloc[j, 0][:4] == f"{i:04d}":
31
  s = float(df.iloc[j, -1])
32
  shape.append((s-low)/interval)
33
  texture = []
34
  for i in texture_indices:
35
- for j in range(200):
36
  if df.iloc[j, 0][:4] == f"{i:04d}":
37
  s = float(df.iloc[j, -1])
38
  texture.append((s-low)/interval)
@@ -60,17 +61,18 @@ def sub_action(model,high=10,low=1):
60
  interval = high - low
61
  score = []
62
  df = pd.read_csv(model)
 
63
 
64
  common = []
65
  for i in common_ind:
66
- for j in range(200):
67
  if df.iloc[j, 0][:4] == f"{i:04d}":
68
  s = float(df.iloc[j, -1])
69
  common.append((s-low)/interval)
70
 
71
  uncommon = []
72
  for i in uncommon_ind:
73
- for j in range(200):
74
  if df.iloc[j, 0][:4] == f"{i:04d}":
75
  s = float(df.iloc[j, -1])
76
  uncommon.append((s-low)/interval)
@@ -94,17 +96,18 @@ def sub_interaction(model,high=10,low=1):
94
  interval = high - low
95
  score = []
96
  df = pd.read_csv(model)
 
97
 
98
  physical = []
99
  for i in physical_ind:
100
- for j in range(200):
101
  if df.iloc[j, 0][:4] == f"{i:04d}":
102
  s = float(df.iloc[j, -1])
103
  physical.append((s-low)/interval)
104
 
105
  social = []
106
  for i in social_ind:
107
- for j in range(200):
108
  if df.iloc[j, 0][:4] == f"{i:04d}":
109
  s = float(df.iloc[j, -1])
110
  social.append((s-low)/interval)
@@ -136,45 +139,46 @@ def sub_spatial(model):
136
 
137
  record = {}
138
  df = pd.read_csv(model) # Replace with your CSV file path
139
-
 
140
  scores = df.iloc[:, -1].tolist()
141
  scores = scores[:200]
142
 
143
  left = []
144
  for i in left_ind:
145
- for j in range(200):
146
  if df.iloc[j, 0][:4] == f"{i:04d}":
147
  s = float(df.iloc[j, -1])
148
  left.append(s)
149
  right = []
150
  for i in right_ind:
151
- for j in range(200):
152
  if df.iloc[j, 0][:4] == f"{i:04d}":
153
  s = float(df.iloc[j, -1])
154
  right.append(s)
155
 
156
  above = []
157
  for i in above_ind:
158
- for j in range(200):
159
  if df.iloc[j, 0][:4] == f"{i:04d}":
160
  s = float(df.iloc[j, -1])
161
  above.append(s)
162
  below = []
163
  for i in below_ind:
164
- for j in range(200):
165
  if df.iloc[j, 0][:4] == f"{i:04d}":
166
  s = float(df.iloc[j, -1])
167
  below.append(s)
168
 
169
  front = []
170
  for i in front_ind:
171
- for j in range(200):
172
  if df.iloc[j, 0][:4] == f"{i:04d}":
173
  s = float(df.iloc[j, -1])
174
  front.append(s)
175
  behind = []
176
  for i in behind_ind:
177
- for j in range(200):
178
  if df.iloc[j, 0][:4] == f"{i:04d}":
179
  s = float(df.iloc[j, -1])
180
  behind.append(s)
@@ -306,9 +310,6 @@ def sub_motion(model):
306
  left_thresh = 5 #5%
307
  up_thresh = 5 #5%
308
 
309
-
310
-
311
-
312
  distance = []
313
  direction = []
314
 
 
16
  interval = high - low
17
  score = []
18
  df = pd.read_csv(model)
19
+ total_videos = df.shape[0] - 1
20
 
21
  color = []
22
  for i in color_indices:
23
+ for j in range(total_videos):
24
  if df.iloc[j, 0][:4] == f"{i:04d}":
25
  s = float(df.iloc[j, -1])
26
  color.append((s-low)/interval)
27
 
28
  shape = []
29
  for i in shape_indices:
30
+ for j in range(total_videos):
31
  if df.iloc[j, 0][:4] == f"{i:04d}":
32
  s = float(df.iloc[j, -1])
33
  shape.append((s-low)/interval)
34
  texture = []
35
  for i in texture_indices:
36
+ for j in range(total_videos):
37
  if df.iloc[j, 0][:4] == f"{i:04d}":
38
  s = float(df.iloc[j, -1])
39
  texture.append((s-low)/interval)
 
61
  interval = high - low
62
  score = []
63
  df = pd.read_csv(model)
64
+ total_videos = df.shape[0] - 1
65
 
66
  common = []
67
  for i in common_ind:
68
+ for j in range(total_videos):
69
  if df.iloc[j, 0][:4] == f"{i:04d}":
70
  s = float(df.iloc[j, -1])
71
  common.append((s-low)/interval)
72
 
73
  uncommon = []
74
  for i in uncommon_ind:
75
+ for j in range(total_videos):
76
  if df.iloc[j, 0][:4] == f"{i:04d}":
77
  s = float(df.iloc[j, -1])
78
  uncommon.append((s-low)/interval)
 
96
  interval = high - low
97
  score = []
98
  df = pd.read_csv(model)
99
+ total_videos = df.shape[0] - 1
100
 
101
  physical = []
102
  for i in physical_ind:
103
+ for j in range(total_videos):
104
  if df.iloc[j, 0][:4] == f"{i:04d}":
105
  s = float(df.iloc[j, -1])
106
  physical.append((s-low)/interval)
107
 
108
  social = []
109
  for i in social_ind:
110
+ for j in range(total_videos):
111
  if df.iloc[j, 0][:4] == f"{i:04d}":
112
  s = float(df.iloc[j, -1])
113
  social.append((s-low)/interval)
 
139
 
140
  record = {}
141
  df = pd.read_csv(model) # Replace with your CSV file path
142
+ total_videos = df.shape[0] - 1
143
+
144
  scores = df.iloc[:, -1].tolist()
145
  scores = scores[:200]
146
 
147
  left = []
148
  for i in left_ind:
149
+ for j in range(total_videos):
150
  if df.iloc[j, 0][:4] == f"{i:04d}":
151
  s = float(df.iloc[j, -1])
152
  left.append(s)
153
  right = []
154
  for i in right_ind:
155
+ for j in range(total_videos):
156
  if df.iloc[j, 0][:4] == f"{i:04d}":
157
  s = float(df.iloc[j, -1])
158
  right.append(s)
159
 
160
  above = []
161
  for i in above_ind:
162
+ for j in range(total_videos):
163
  if df.iloc[j, 0][:4] == f"{i:04d}":
164
  s = float(df.iloc[j, -1])
165
  above.append(s)
166
  below = []
167
  for i in below_ind:
168
+ for j in range(total_videos):
169
  if df.iloc[j, 0][:4] == f"{i:04d}":
170
  s = float(df.iloc[j, -1])
171
  below.append(s)
172
 
173
  front = []
174
  for i in front_ind:
175
+ for j in range(total_videos):
176
  if df.iloc[j, 0][:4] == f"{i:04d}":
177
  s = float(df.iloc[j, -1])
178
  front.append(s)
179
  behind = []
180
  for i in behind_ind:
181
+ for j in range(total_videos):
182
  if df.iloc[j, 0][:4] == f"{i:04d}":
183
  s = float(df.iloc[j, -1])
184
  behind.append(s)
 
310
  left_thresh = 5 #5%
311
  up_thresh = 5 #5%
312
 
 
 
 
313
  distance = []
314
  direction = []
315