Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import requests | |
import json | |
import base64 | |
from io import BytesIO | |
from huggingface_hub import login | |
from PIL import Image | |
# myip = os.environ["0.0.0.0"] | |
# myport = os.environ["80"] | |
myip = "34.219.98.113" | |
myport=8000 | |
is_spaces = True if "SPACE_ID" in os.environ else False | |
is_shared_ui = False | |
from css_html_js import custom_css | |
from about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT, | |
TITLE, | |
) | |
def process_image_from_binary(img_stream): | |
if img_stream is None: | |
print("no image binary") | |
return | |
image_data = base64.b64decode(img_stream) | |
image_bytes = BytesIO(image_data) | |
img = Image.open(image_bytes) | |
return img | |
def execute_prepare(diffusion_model_id, concept, steps, attack_id): | |
print(f"my IP is {myip}, my port is {myport}") | |
print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, steps: {steps}") | |
response = requests.post('http://{}:{}/prepare'.format(myip, myport), | |
json={"diffusion_model_id": diffusion_model_id, "concept": concept, "steps": steps, "attack_id": attack_id}, | |
timeout=(10, 1200)) | |
print(f"result: {response}") | |
# result = result.text[1:-1] | |
prompt = "" | |
img = None | |
if response.status_code == 200: | |
response_json = response.json() | |
print(response_json) | |
prompt = response_json['input_prompt'] | |
img = process_image_from_binary(response_json['no_attack_img']) | |
else: | |
print(f"Request failed with status code {response.status_code}") | |
return prompt, img | |
def execute_udiff(diffusion_model_id, concept, steps, attack_id): | |
print(f"my IP is {myip}, my port is {myport}") | |
print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, steps: {steps}") | |
response = requests.post('http://{}:{}/udiff'.format(myip, myport), | |
json={"diffusion_model_id": diffusion_model_id, "concept": concept, "steps": steps, "attack_id": attack_id}, | |
timeout=(10, 1200)) | |
print(f"result: {response}") | |
# result = result.text[1:-1] | |
prompt = "" | |
img = None | |
if response.status_code == 200: | |
response_json = response.json() | |
print(response_json) | |
prompt = response_json['output_prompt'] | |
img = process_image_from_binary(response_json['attack_img']) | |
else: | |
print(f"Request failed with status code {response.status_code}") | |
return prompt, img | |
css = ''' | |
.instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important} | |
.arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important} | |
#component-4, #component-3, #component-10{min-height: 0} | |
.duplicate-button img{margin: 0} | |
#img_1, #img_2, #img_3, #img_4{height:15rem} | |
#mdStyle{font-size: 0.7rem} | |
#titleCenter {text-align:center} | |
''' | |
with gr.Blocks(css=custom_css) as demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
# gr.Markdown("# Demo of UnlearnDiffAtk.") | |
# gr.Markdown("### UnlearnDiffAtk is an effective and efficient adversarial prompt generation approach for unlearned diffusion models(DMs).") | |
# # gr.Markdown("####For more details, please visit the [project](https://www.optml-group.com/posts/mu_attack), | |
# # check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).") | |
# gr.Markdown("### Please notice that the process may take a long time, but the results will be saved. You can try it later if it waits for too long.") | |
with gr.Row() as udiff: | |
with gr.Row(): | |
drop = gr.Dropdown(["Object-Church", "Object-Parachute", "Object-Garbage_Truck","Style-VanGogh", | |
"Nudity"], | |
label="Unlearning undesirable concepts") | |
with gr.Column(): | |
# gr.Markdown("Please upload your model id.") | |
drop_model = gr.Dropdown(["ESD", "FMN", "SPM"], | |
label="Unlearned DMs") | |
# diffusion_model_T = gr.Textbox(label='diffusion_model_id') | |
# concept = gr.Textbox(label='concept') | |
# attacker = gr.Textbox(label='attacker') | |
# start_button = gr.Button("Attack!") | |
with gr.Column(): | |
atk_idx = gr.Textbox(label="attack index") | |
with gr.Column(): | |
shown_columns_step = gr.Slider( | |
0, 100, value=40, | |
step=1, label="Attack Steps", info="Choose between 0 and 100", | |
interactive=True,) | |
with gr.Row() as attack: | |
with gr.Column(min_width=512): | |
start_button = gr.Button("Attack prepare!",size='lg') | |
text_input = gr.Textbox(label="Input Prompt") | |
orig_img = gr.Image(label="Image Gnerated by Unlearned DM using input prompt",width=512,show_share_button=False,show_download_button=False) | |
with gr.Column(): | |
attack_button = gr.Button("UnlearnDiffAtk!",size='lg') | |
text_ouput = gr.Textbox(label="Adversarial Prompt Genetated by UnlearnDiffAtk") | |
result_img = gr.Image(label="Image Gnerated by Unlearned DM using adversarial prompt",width=512,show_share_button=False,show_download_button=False) | |
start_button.click(fn=execute_prepare, inputs=[drop_model, drop, shown_columns_step, atk_idx], outputs=[text_input, orig_img], api_name="prepare") | |
attack_button.click(fn=execute_udiff, inputs=[drop_model, drop, shown_columns_step, atk_idx], outputs=[text_ouput, result_img], api_name="udiff") | |
demo.queue().launch(server_name='0.0.0.0') |