File size: 5,845 Bytes
6882aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d3e60
6882aba
 
 
c8f2344
f2d3e60
6882aba
1c89cdf
c8f2344
6882aba
 
 
 
 
7ccf651
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

import gradio as gr
import os
import requests
import json
import base64
from io import BytesIO
from huggingface_hub import login
from PIL import Image


# myip = os.environ["0.0.0.0"]
# myport = os.environ["80"]
myip = "34.219.98.113"
myport=8000

is_spaces = True if "SPACE_ID" in os.environ else False

is_shared_ui = False

from css_html_js import custom_css

from about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)


def process_image_from_binary(img_stream):
    if img_stream is None:
        print("no image binary")
        return
    image_data = base64.b64decode(img_stream)
    image_bytes = BytesIO(image_data)
    img = Image.open(image_bytes)
    
    return img

def execute_prepare(diffusion_model_id, concept, steps, attack_id):
    print(f"my IP is {myip}, my port is {myport}")
    print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, steps: {steps}")
    response = requests.post('http://{}:{}/prepare'.format(myip, myport), 
                             json={"diffusion_model_id": diffusion_model_id, "concept": concept, "steps": steps, "attack_id": attack_id},
                             timeout=(10, 1200))
    print(f"result: {response}")
    # result = result.text[1:-1]
    prompt = ""
    img = None
    if response.status_code == 200:
        response_json = response.json()
        print(response_json)
        prompt = response_json['input_prompt']
        img = process_image_from_binary(response_json['no_attack_img'])
    else:
        print(f"Request failed with status code {response.status_code}")
    
    return prompt, img

def execute_udiff(diffusion_model_id, concept, steps, attack_id):
    print(f"my IP is {myip}, my port is {myport}")
    print(f"my input is diffusion_model_id: {diffusion_model_id}, concept: {concept}, steps: {steps}")
    response = requests.post('http://{}:{}/udiff'.format(myip, myport), 
                             json={"diffusion_model_id": diffusion_model_id, "concept": concept, "steps": steps, "attack_id": attack_id},
                             timeout=(10, 1200))
    print(f"result: {response}")
    # result = result.text[1:-1]
    prompt = ""
    img = None
    if response.status_code == 200:
        response_json = response.json()
        print(response_json)
        prompt = response_json['output_prompt']
        img = process_image_from_binary(response_json['attack_img'])
    else:
        print(f"Request failed with status code {response.status_code}")
    
    return prompt, img


css = '''
    .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
    .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
    #component-4, #component-3, #component-10{min-height: 0}
    .duplicate-button img{margin: 0}
    #img_1, #img_2, #img_3, #img_4{height:15rem}
    #mdStyle{font-size: 0.7rem}
    #titleCenter {text-align:center}
'''


with gr.Blocks(css=custom_css) as demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

#     gr.Markdown("# Demo of UnlearnDiffAtk.")
#     gr.Markdown("### UnlearnDiffAtk is an effective and efficient adversarial prompt generation approach for unlearned diffusion models(DMs).")
# #     gr.Markdown("####For more details, please visit the [project](https://www.optml-group.com/posts/mu_attack), 
# # check the [code](https://github.com/OPTML-Group/Diffusion-MU-Attack), and read the [paper](https://arxiv.org/abs/2310.11868).")
#     gr.Markdown("### Please notice that the process may take a long time, but the results will be saved. You can try it later if it waits for too long.")
    

    with gr.Row() as udiff:
        with gr.Row():
            drop = gr.Dropdown(["Object-Church", "Object-Parachute", "Object-Garbage_Truck","Style-VanGogh",
                               "Nudity"], 
                               label="Unlearning undesirable concepts")
        with gr.Column():
            # gr.Markdown("Please upload your model id.")
            drop_model = gr.Dropdown(["ESD", "FMN", "SPM"], 
                               label="Unlearned DMs")
            # diffusion_model_T = gr.Textbox(label='diffusion_model_id')
            # concept = gr.Textbox(label='concept')
            # attacker = gr.Textbox(label='attacker')

            # start_button = gr.Button("Attack!")
        with gr.Column():
            atk_idx = gr.Textbox(label="attack index")

        with gr.Column():
             shown_columns_step = gr.Slider(
                            0, 100, value=40, 
                            step=1, label="Attack Steps", info="Choose between 0 and 100",
                            interactive=True,)
    with gr.Row() as attack:
        with gr.Column(min_width=512):
            start_button = gr.Button("Attack prepare!",size='lg')
            text_input = gr.Textbox(label="Input Prompt")
            
            orig_img = gr.Image(label="Image Gnerated by Unlearned DM using input prompt",width=512,show_share_button=False,show_download_button=False)
        with gr.Column():
            attack_button = gr.Button("UnlearnDiffAtk!",size='lg')
            text_ouput = gr.Textbox(label="Adversarial Prompt Genetated by UnlearnDiffAtk")
            result_img = gr.Image(label="Image Gnerated by Unlearned DM using adversarial prompt",width=512,show_share_button=False,show_download_button=False)
            
        start_button.click(fn=execute_prepare, inputs=[drop_model, drop, shown_columns_step, atk_idx], outputs=[text_input, orig_img], api_name="prepare")
        attack_button.click(fn=execute_udiff, inputs=[drop_model, drop, shown_columns_step, atk_idx], outputs=[text_ouput, result_img], api_name="udiff")


demo.queue().launch(server_name='0.0.0.0')