RuoyuFeng's picture
Add gr state
e0e7968
raw
history blame
6.64 kB
import gradio as gr
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
import torch
import tempfile
import os
from omegaconf import OmegaConf
from sam_segment import predict_masks_with_sam
from lama_inpaint import inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
show_mask, show_points
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry
def mkstemp(suffix, dir=None):
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
os.close(fd)
return Path(path)
def get_sam_feat(img):
# predictor.set_image(img)
model['sam'].set_image(img)
features = model['sam'].features
orig_h = model['sam'].orig_h
orig_w = model['sam'].orig_w
input_h = model['sam'].input_h
input_w = model['sam'].input_w
return features, orig_h, orig_w, input_h, input_w
def get_masked_img(img, w, h, features, orig_h, orig_w, input_h, input_w):
point_coords = [w, h]
point_labels = [1]
dilate_kernel_size = 15
# model['sam'].is_image_set = False
model['sam'].features = features
model['sam'].orig_h = orig_h
model['sam'].orig_w = orig_w
model['sam'].input_h = input_h
model['sam'].input_w = input_w
# model['sam'].image_embedding = image_embedding
# model['sam'].original_size = original_size
# model['sam'].input_size = input_size
# model['sam'].is_image_set = True
# model['sam'].set_image(img)
# masks, _, _ = predictor.predict(
masks, _, _ = model['sam'].predict(
point_coords=np.array([point_coords]),
point_labels=np.array(point_labels),
multimask_output=True,
)
masks = masks.astype(np.uint8) * 255
# dilate mask to avoid unmasked edge effect
if dilate_kernel_size is not None:
masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks]
else:
masks = [mask for mask in masks]
figs = []
for idx, mask in enumerate(masks):
# save the pointed and masked image
tmp_p = mkstemp(".png")
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
plt.imshow(img)
plt.axis('off')
show_points(plt.gca(), [point_coords], point_labels,
size=(width*0.04)**2)
show_mask(plt.gca(), mask, random_color=False)
plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
figs.append(fig)
plt.close()
return *figs, *masks
def get_inpainted_img(img, mask0, mask1, mask2):
lama_config = "third_party/lama/configs/prediction/default.yaml"
# lama_ckpt = "pretrained_models/big-lama"
device = "cuda" if torch.cuda.is_available() else "cpu"
out = []
for mask in [mask0, mask1, mask2]:
if len(mask.shape)==3:
mask = mask[:,:,0]
img_inpainted = inpaint_img_with_builded_lama(
model['lama'], img, mask, lama_config, device=device)
out.append(img_inpainted)
return out
## build models
model = {}
# build the sam model
model_type="vit_h"
ckpt_p="pretrained_models/sam_vit_h_4b8939.pth"
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_sam.to(device=device)
# predictor = SamPredictor(model_sam)
model['sam'] = SamPredictor(model_sam)
# build the lama model
lama_config = "third_party/lama/configs/prediction/default.yaml"
lama_ckpt = "pretrained_models/big-lama"
device = "cuda" if torch.cuda.is_available() else "cpu"
# model_lama = build_lama_model(lama_config, lama_ckpt, device=device)
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
with gr.Blocks() as demo:
features = gr.State(None)
orig_h = gr.State(None)
orig_w = gr.State(None)
input_h = gr.State(None)
input_w = gr.State(None)
with gr.Row():
img = gr.Image(label="Image")
# img_pointed = gr.Image(label='Pointed Image')
img_pointed = gr.Plot(label='Pointed Image')
with gr.Column():
with gr.Row():
w = gr.Number(label="Point Coordinate W")
h = gr.Number(label="Point Coordinate H")
# sam_feat = gr.Button("Prepare for Segmentation")
sam_mask = gr.Button("Predict Mask Using SAM")
lama = gr.Button("Inpaint Image Using LaMA")
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
with gr.Row():
mask_0 = gr.outputs.Image(type="numpy", label="Segmentation Mask 0")
mask_1 = gr.outputs.Image(type="numpy", label="Segmentation Mask 1")
mask_2 = gr.outputs.Image(type="numpy", label="Segmentation Mask 2")
with gr.Row():
img_with_mask_0 = gr.Plot(label="Image with Segmentation Mask 0")
img_with_mask_1 = gr.Plot(label="Image with Segmentation Mask 1")
img_with_mask_2 = gr.Plot(label="Image with Segmentation Mask 2")
with gr.Row():
img_rm_with_mask_0 = gr.outputs.Image(
type="numpy", label="Image Removed with Segmentation Mask 0")
img_rm_with_mask_1 = gr.outputs.Image(
type="numpy", label="Image Removed with Segmentation Mask 1")
img_rm_with_mask_2 = gr.outputs.Image(
type="numpy", label="Image Removed with Segmentation Mask 2")
def get_select_coords(img, evt: gr.SelectData):
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
plt.imshow(img)
plt.axis('off')
show_points(plt.gca(), [[evt.index[0], evt.index[1]]], [1],
size=(width*0.04)**2)
return evt.index[0], evt.index[1], fig
img.select(get_select_coords, [img], [w, h, img_pointed])
# sam_feat.click(
# get_sam_feat,
# [img],
# []
# )
# img.change(get_sam_feat, [img], [])
img.upload(get_sam_feat, [img], [features, orig_h, orig_w, input_h, input_w])
sam_mask.click(
get_masked_img,
[img, w, h, features, orig_h, orig_w, input_h, input_w],
[img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2]
)
lama.click(
get_inpainted_img,
[img, mask_0, mask_1, mask_2],
[img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2]
)
if __name__ == "__main__":
# demo.queue(concurrency_count=4, max_size=25)
# demo.launch(max_threads=8)
demo.launch()