Spaces:
Runtime error
Runtime error
File size: 6,635 Bytes
6f49966 b5baf02 469f43d 2b6c2bd 469f43d 2b6c2bd c331e65 469f43d 2b6c2bd b5baf02 e707d28 469f43d 6abb9e2 e707d28 c331e65 469f43d b5baf02 bf33a49 e707d28 469f43d b5baf02 c331e65 b5baf02 c331e65 b5baf02 c331e65 b5baf02 c331e65 b5baf02 c331e65 bbde720 c331e65 469f43d ca3a0e9 c331e65 b5baf02 469f43d 6f49966 e707d28 6f49966 b5baf02 469f43d c331e65 ca3a0e9 469f43d c331e65 469f43d 2b6c2bd c331e65 b5baf02 c331e65 b5baf02 c331e65 b5baf02 469f43d 6f49966 469f43d ca3a0e9 bf33a49 e707d28 469f43d b5baf02 e707d28 c331e65 b5baf02 6f49966 e0e7968 469f43d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import gradio as gr
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
import torch
import tempfile
import os
from omegaconf import OmegaConf
from sam_segment import predict_masks_with_sam
from lama_inpaint import inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
show_mask, show_points
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry
def mkstemp(suffix, dir=None):
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
os.close(fd)
return Path(path)
def get_sam_feat(img):
# predictor.set_image(img)
model['sam'].set_image(img)
features = model['sam'].features
orig_h = model['sam'].orig_h
orig_w = model['sam'].orig_w
input_h = model['sam'].input_h
input_w = model['sam'].input_w
return features, orig_h, orig_w, input_h, input_w
def get_masked_img(img, w, h, features, orig_h, orig_w, input_h, input_w):
point_coords = [w, h]
point_labels = [1]
dilate_kernel_size = 15
# model['sam'].is_image_set = False
model['sam'].features = features
model['sam'].orig_h = orig_h
model['sam'].orig_w = orig_w
model['sam'].input_h = input_h
model['sam'].input_w = input_w
# model['sam'].image_embedding = image_embedding
# model['sam'].original_size = original_size
# model['sam'].input_size = input_size
# model['sam'].is_image_set = True
# model['sam'].set_image(img)
# masks, _, _ = predictor.predict(
masks, _, _ = model['sam'].predict(
point_coords=np.array([point_coords]),
point_labels=np.array(point_labels),
multimask_output=True,
)
masks = masks.astype(np.uint8) * 255
# dilate mask to avoid unmasked edge effect
if dilate_kernel_size is not None:
masks = [dilate_mask(mask, dilate_kernel_size) for mask in masks]
else:
masks = [mask for mask in masks]
figs = []
for idx, mask in enumerate(masks):
# save the pointed and masked image
tmp_p = mkstemp(".png")
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
plt.imshow(img)
plt.axis('off')
show_points(plt.gca(), [point_coords], point_labels,
size=(width*0.04)**2)
show_mask(plt.gca(), mask, random_color=False)
plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
figs.append(fig)
plt.close()
return *figs, *masks
def get_inpainted_img(img, mask0, mask1, mask2):
lama_config = "third_party/lama/configs/prediction/default.yaml"
# lama_ckpt = "pretrained_models/big-lama"
device = "cuda" if torch.cuda.is_available() else "cpu"
out = []
for mask in [mask0, mask1, mask2]:
if len(mask.shape)==3:
mask = mask[:,:,0]
img_inpainted = inpaint_img_with_builded_lama(
model['lama'], img, mask, lama_config, device=device)
out.append(img_inpainted)
return out
## build models
model = {}
# build the sam model
model_type="vit_h"
ckpt_p="pretrained_models/sam_vit_h_4b8939.pth"
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_sam.to(device=device)
# predictor = SamPredictor(model_sam)
model['sam'] = SamPredictor(model_sam)
# build the lama model
lama_config = "third_party/lama/configs/prediction/default.yaml"
lama_ckpt = "pretrained_models/big-lama"
device = "cuda" if torch.cuda.is_available() else "cpu"
# model_lama = build_lama_model(lama_config, lama_ckpt, device=device)
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
with gr.Blocks() as demo:
features = gr.State(None)
orig_h = gr.State(None)
orig_w = gr.State(None)
input_h = gr.State(None)
input_w = gr.State(None)
with gr.Row():
img = gr.Image(label="Image")
# img_pointed = gr.Image(label='Pointed Image')
img_pointed = gr.Plot(label='Pointed Image')
with gr.Column():
with gr.Row():
w = gr.Number(label="Point Coordinate W")
h = gr.Number(label="Point Coordinate H")
# sam_feat = gr.Button("Prepare for Segmentation")
sam_mask = gr.Button("Predict Mask Using SAM")
lama = gr.Button("Inpaint Image Using LaMA")
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
with gr.Row():
mask_0 = gr.outputs.Image(type="numpy", label="Segmentation Mask 0")
mask_1 = gr.outputs.Image(type="numpy", label="Segmentation Mask 1")
mask_2 = gr.outputs.Image(type="numpy", label="Segmentation Mask 2")
with gr.Row():
img_with_mask_0 = gr.Plot(label="Image with Segmentation Mask 0")
img_with_mask_1 = gr.Plot(label="Image with Segmentation Mask 1")
img_with_mask_2 = gr.Plot(label="Image with Segmentation Mask 2")
with gr.Row():
img_rm_with_mask_0 = gr.outputs.Image(
type="numpy", label="Image Removed with Segmentation Mask 0")
img_rm_with_mask_1 = gr.outputs.Image(
type="numpy", label="Image Removed with Segmentation Mask 1")
img_rm_with_mask_2 = gr.outputs.Image(
type="numpy", label="Image Removed with Segmentation Mask 2")
def get_select_coords(img, evt: gr.SelectData):
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
fig = plt.figure(figsize=(width/dpi/0.77, height/dpi/0.77))
plt.imshow(img)
plt.axis('off')
show_points(plt.gca(), [[evt.index[0], evt.index[1]]], [1],
size=(width*0.04)**2)
return evt.index[0], evt.index[1], fig
img.select(get_select_coords, [img], [w, h, img_pointed])
# sam_feat.click(
# get_sam_feat,
# [img],
# []
# )
# img.change(get_sam_feat, [img], [])
img.upload(get_sam_feat, [img], [features, orig_h, orig_w, input_h, input_w])
sam_mask.click(
get_masked_img,
[img, w, h, features, orig_h, orig_w, input_h, input_w],
[img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2]
)
lama.click(
get_inpainted_img,
[img, mask_0, mask_1, mask_2],
[img_rm_with_mask_0, img_rm_with_mask_1, img_rm_with_mask_2]
)
if __name__ == "__main__":
# demo.queue(concurrency_count=4, max_size=25)
# demo.launch(max_threads=8)
demo.launch()
|