Spaces:
Runtime error
Runtime error
import cv2 | |
import datetime | |
import imutils | |
import numpy as np | |
from centroidtracker import CentroidTracker | |
from itertools import combinations | |
import math | |
protopath = "MobileNetSSD_deploy.prototxt" | |
modelpath = "MobileNetSSD_deploy.caffemodel" | |
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath) | |
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE) | |
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) | |
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat", | |
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable", | |
"dog", "horse", "motorbike", "person", "pottedplant", "sheep", | |
"sofa", "train", "tvmonitor"] | |
tracker = CentroidTracker(maxDisappeared=40, maxDistance=50) | |
def non_max_suppression_fast(boxes, overlapThresh): | |
try: | |
if len(boxes) == 0: | |
return [] | |
if boxes.dtype.kind == "i": | |
boxes = boxes.astype("float") | |
pick = [] | |
x1 = boxes[:, 0] | |
y1 = boxes[:, 1] | |
x2 = boxes[:, 2] | |
y2 = boxes[:, 3] | |
area = (x2 - x1 + 1) * (y2 - y1 + 1) | |
idxs = np.argsort(y2) | |
while len(idxs) > 0: | |
last = len(idxs) - 1 | |
i = idxs[last] | |
pick.append(i) | |
xx1 = np.maximum(x1[i], x1[idxs[:last]]) | |
yy1 = np.maximum(y1[i], y1[idxs[:last]]) | |
xx2 = np.minimum(x2[i], x2[idxs[:last]]) | |
yy2 = np.minimum(y2[i], y2[idxs[:last]]) | |
w = np.maximum(0, xx2 - xx1 + 1) | |
h = np.maximum(0, yy2 - yy1 + 1) | |
overlap = (w * h) / area[idxs[:last]] | |
idxs = np.delete(idxs, np.concatenate(([last], | |
np.where(overlap > overlapThresh)[0]))) | |
return boxes[pick].astype("int") | |
except Exception as e: | |
print("Exception occurred in non_max_suppression : {}".format(e)) | |
def main(): | |
cap = cv2.VideoCapture('testvideo2.mp4') | |
fps_start_time = datetime.datetime.now() | |
fps = 0 | |
total_frames = 0 | |
while True: | |
ret, frame = cap.read() | |
frame = imutils.resize(frame, width=600) | |
total_frames = total_frames + 1 | |
(H, W) = frame.shape[:2] | |
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5) | |
detector.setInput(blob) | |
person_detections = detector.forward() | |
rects = [] | |
for i in np.arange(0, person_detections.shape[2]): | |
confidence = person_detections[0, 0, i, 2] | |
if confidence > 0.5: | |
idx = int(person_detections[0, 0, i, 1]) | |
if CLASSES[idx] != "person": | |
continue | |
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H]) | |
(startX, startY, endX, endY) = person_box.astype("int") | |
rects.append(person_box) | |
boundingboxes = np.array(rects) | |
boundingboxes = boundingboxes.astype(int) | |
rects = non_max_suppression_fast(boundingboxes, 0.3) | |
centroid_dict = dict() | |
objects = tracker.update(rects) | |
for (objectId, bbox) in objects.items(): | |
x1, y1, x2, y2 = bbox | |
x1 = int(x1) | |
y1 = int(y1) | |
x2 = int(x2) | |
y2 = int(y2) | |
cX = int((x1 + x2) / 2.0) | |
cY = int((y1 + y2) / 2.0) | |
centroid_dict[objectId] = (cX, cY, x1, y1, x2, y2) | |
# text = "ID: {}".format(objectId) | |
# cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1) | |
red_zone_list = [] | |
for (id1, p1), (id2, p2) in combinations(centroid_dict.items(), 2): | |
dx, dy = p1[0] - p2[0], p1[1] - p2[1] | |
distance = math.sqrt(dx * dx + dy * dy) | |
if distance < 75.0: | |
if id1 not in red_zone_list: | |
red_zone_list.append(id1) | |
if id2 not in red_zone_list: | |
red_zone_list.append(id2) | |
for id, box in centroid_dict.items(): | |
if id in red_zone_list: | |
cv2.rectangle(frame, (box[2], box[3]), (box[4], box[5]), (0, 0, 255), 2) | |
else: | |
cv2.rectangle(frame, (box[2], box[3]), (box[4], box[5]), (0, 255, 0), 2) | |
fps_end_time = datetime.datetime.now() | |
time_diff = fps_end_time - fps_start_time | |
if time_diff.seconds == 0: | |
fps = 0.0 | |
else: | |
fps = (total_frames / time_diff.seconds) | |
fps_text = "FPS: {:.2f}".format(fps) | |
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1) | |
cv2.imshow("Application", frame) | |
key = cv2.waitKey(1) | |
if key == ord('q'): | |
break | |
cv2.destroyAllWindows() | |
main() | |