Spaces:
Runtime error
Runtime error
Upload 49 files
Browse files- .gitattributes +6 -0
- LoginStatus.csv +7 -0
- MobileNetSSD_deploy.caffemodel +3 -0
- MobileNetSSD_deploy.prototxt +1912 -0
- README.md +45 -12
- __pycache__/centroidtracker.cpython-310.pyc +0 -0
- app.py +24 -0
- cat_dog_detection.py +43 -0
- centroidtracker.py +172 -0
- data.db +0 -0
- deploy.prototxt +1789 -0
- draw_tracking_line.py +152 -0
- dwell_time_calculation.py +147 -0
- eg.py +691 -0
- face_detections.py +60 -0
- face_mask_detector.py +73 -0
- fps_example.py +37 -0
- generate_keys.py +17 -0
- img/cat.jpg +0 -0
- img/dog.jpg +0 -0
- img/input_image.jpg +0 -0
- img/people.jpg +0 -0
- logo.jpeg +0 -0
- mask.mp4 +3 -0
- mask_detector.model +3 -0
- model files/face detection model/deploy.prototxt +1789 -0
- model files/face detection model/readme.txt +1 -0
- model files/face detection model/res10_300x300_ssd_iter_140000.caffemodel +3 -0
- model files/face mask detection model/mask_detector.model +3 -0
- model files/generic object detection model/MobileNetSSD_deploy.caffemodel +3 -0
- model files/generic object detection model/MobileNetSSD_deploy.prototxt +1912 -0
- model files/generic object detection model/readme.txt +8 -0
- opencv-example.py +22 -0
- pages/Login.py +679 -0
- pages/LoginStatus.csv +3 -0
- pages/hashed_pw.pkl +3 -0
- pages/signup.py +81 -0
- person_counter.py +143 -0
- person_detection_image.py +43 -0
- person_detection_video.py +71 -0
- person_tracking.py +542 -0
- requirements.txt +120 -0
- res10_300x300_ssd_iter_140000.caffemodel +3 -0
- social_distancing.py +152 -0
- test4.csv +4 -0
- test_video.mp4 +3 -0
- video/mask.mp4 +3 -0
- video/test_video.mp4 +3 -0
- video/testvideo2.mp4 +3 -0
- yolov5s.pt +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
mask.mp4 filter=lfs diff=lfs merge=lfs -text
|
36 |
+
MobileNetSSD_deploy.caffemodel filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model[[:space:]]files/face[[:space:]]detection[[:space:]]model/res10_300x300_ssd_iter_140000.caffemodel filter=lfs diff=lfs merge=lfs -text
|
38 |
+
res10_300x300_ssd_iter_140000.caffemodel filter=lfs diff=lfs merge=lfs -text
|
39 |
+
test_video.mp4 filter=lfs diff=lfs merge=lfs -text
|
40 |
+
video/testvideo2.mp4 filter=lfs diff=lfs merge=lfs -text
|
LoginStatus.csv
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Id,Password
|
2 |
+
|
3 |
+
ffg,ffg
|
4 |
+
anas,12345
|
5 |
+
test,12345
|
6 |
+
test,12345
|
7 |
+
imran,12345
|
MobileNetSSD_deploy.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:761c86fbae3d8361dd454f7c740a964f62975ed32f4324b8b85994edec30f6af
|
3 |
+
size 23147564
|
MobileNetSSD_deploy.prototxt
ADDED
@@ -0,0 +1,1912 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "MobileNet-SSD"
|
2 |
+
input: "data"
|
3 |
+
input_shape {
|
4 |
+
dim: 1
|
5 |
+
dim: 3
|
6 |
+
dim: 300
|
7 |
+
dim: 300
|
8 |
+
}
|
9 |
+
layer {
|
10 |
+
name: "conv0"
|
11 |
+
type: "Convolution"
|
12 |
+
bottom: "data"
|
13 |
+
top: "conv0"
|
14 |
+
param {
|
15 |
+
lr_mult: 1.0
|
16 |
+
decay_mult: 1.0
|
17 |
+
}
|
18 |
+
param {
|
19 |
+
lr_mult: 2.0
|
20 |
+
decay_mult: 0.0
|
21 |
+
}
|
22 |
+
convolution_param {
|
23 |
+
num_output: 32
|
24 |
+
pad: 1
|
25 |
+
kernel_size: 3
|
26 |
+
stride: 2
|
27 |
+
weight_filler {
|
28 |
+
type: "msra"
|
29 |
+
}
|
30 |
+
bias_filler {
|
31 |
+
type: "constant"
|
32 |
+
value: 0.0
|
33 |
+
}
|
34 |
+
}
|
35 |
+
}
|
36 |
+
layer {
|
37 |
+
name: "conv0/relu"
|
38 |
+
type: "ReLU"
|
39 |
+
bottom: "conv0"
|
40 |
+
top: "conv0"
|
41 |
+
}
|
42 |
+
layer {
|
43 |
+
name: "conv1/dw"
|
44 |
+
type: "Convolution"
|
45 |
+
bottom: "conv0"
|
46 |
+
top: "conv1/dw"
|
47 |
+
param {
|
48 |
+
lr_mult: 1.0
|
49 |
+
decay_mult: 1.0
|
50 |
+
}
|
51 |
+
param {
|
52 |
+
lr_mult: 2.0
|
53 |
+
decay_mult: 0.0
|
54 |
+
}
|
55 |
+
convolution_param {
|
56 |
+
num_output: 32
|
57 |
+
pad: 1
|
58 |
+
kernel_size: 3
|
59 |
+
group: 32
|
60 |
+
engine: CAFFE
|
61 |
+
weight_filler {
|
62 |
+
type: "msra"
|
63 |
+
}
|
64 |
+
bias_filler {
|
65 |
+
type: "constant"
|
66 |
+
value: 0.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
}
|
70 |
+
layer {
|
71 |
+
name: "conv1/dw/relu"
|
72 |
+
type: "ReLU"
|
73 |
+
bottom: "conv1/dw"
|
74 |
+
top: "conv1/dw"
|
75 |
+
}
|
76 |
+
layer {
|
77 |
+
name: "conv1"
|
78 |
+
type: "Convolution"
|
79 |
+
bottom: "conv1/dw"
|
80 |
+
top: "conv1"
|
81 |
+
param {
|
82 |
+
lr_mult: 1.0
|
83 |
+
decay_mult: 1.0
|
84 |
+
}
|
85 |
+
param {
|
86 |
+
lr_mult: 2.0
|
87 |
+
decay_mult: 0.0
|
88 |
+
}
|
89 |
+
convolution_param {
|
90 |
+
num_output: 64
|
91 |
+
kernel_size: 1
|
92 |
+
weight_filler {
|
93 |
+
type: "msra"
|
94 |
+
}
|
95 |
+
bias_filler {
|
96 |
+
type: "constant"
|
97 |
+
value: 0.0
|
98 |
+
}
|
99 |
+
}
|
100 |
+
}
|
101 |
+
layer {
|
102 |
+
name: "conv1/relu"
|
103 |
+
type: "ReLU"
|
104 |
+
bottom: "conv1"
|
105 |
+
top: "conv1"
|
106 |
+
}
|
107 |
+
layer {
|
108 |
+
name: "conv2/dw"
|
109 |
+
type: "Convolution"
|
110 |
+
bottom: "conv1"
|
111 |
+
top: "conv2/dw"
|
112 |
+
param {
|
113 |
+
lr_mult: 1.0
|
114 |
+
decay_mult: 1.0
|
115 |
+
}
|
116 |
+
param {
|
117 |
+
lr_mult: 2.0
|
118 |
+
decay_mult: 0.0
|
119 |
+
}
|
120 |
+
convolution_param {
|
121 |
+
num_output: 64
|
122 |
+
pad: 1
|
123 |
+
kernel_size: 3
|
124 |
+
stride: 2
|
125 |
+
group: 64
|
126 |
+
engine: CAFFE
|
127 |
+
weight_filler {
|
128 |
+
type: "msra"
|
129 |
+
}
|
130 |
+
bias_filler {
|
131 |
+
type: "constant"
|
132 |
+
value: 0.0
|
133 |
+
}
|
134 |
+
}
|
135 |
+
}
|
136 |
+
layer {
|
137 |
+
name: "conv2/dw/relu"
|
138 |
+
type: "ReLU"
|
139 |
+
bottom: "conv2/dw"
|
140 |
+
top: "conv2/dw"
|
141 |
+
}
|
142 |
+
layer {
|
143 |
+
name: "conv2"
|
144 |
+
type: "Convolution"
|
145 |
+
bottom: "conv2/dw"
|
146 |
+
top: "conv2"
|
147 |
+
param {
|
148 |
+
lr_mult: 1.0
|
149 |
+
decay_mult: 1.0
|
150 |
+
}
|
151 |
+
param {
|
152 |
+
lr_mult: 2.0
|
153 |
+
decay_mult: 0.0
|
154 |
+
}
|
155 |
+
convolution_param {
|
156 |
+
num_output: 128
|
157 |
+
kernel_size: 1
|
158 |
+
weight_filler {
|
159 |
+
type: "msra"
|
160 |
+
}
|
161 |
+
bias_filler {
|
162 |
+
type: "constant"
|
163 |
+
value: 0.0
|
164 |
+
}
|
165 |
+
}
|
166 |
+
}
|
167 |
+
layer {
|
168 |
+
name: "conv2/relu"
|
169 |
+
type: "ReLU"
|
170 |
+
bottom: "conv2"
|
171 |
+
top: "conv2"
|
172 |
+
}
|
173 |
+
layer {
|
174 |
+
name: "conv3/dw"
|
175 |
+
type: "Convolution"
|
176 |
+
bottom: "conv2"
|
177 |
+
top: "conv3/dw"
|
178 |
+
param {
|
179 |
+
lr_mult: 1.0
|
180 |
+
decay_mult: 1.0
|
181 |
+
}
|
182 |
+
param {
|
183 |
+
lr_mult: 2.0
|
184 |
+
decay_mult: 0.0
|
185 |
+
}
|
186 |
+
convolution_param {
|
187 |
+
num_output: 128
|
188 |
+
pad: 1
|
189 |
+
kernel_size: 3
|
190 |
+
group: 128
|
191 |
+
engine: CAFFE
|
192 |
+
weight_filler {
|
193 |
+
type: "msra"
|
194 |
+
}
|
195 |
+
bias_filler {
|
196 |
+
type: "constant"
|
197 |
+
value: 0.0
|
198 |
+
}
|
199 |
+
}
|
200 |
+
}
|
201 |
+
layer {
|
202 |
+
name: "conv3/dw/relu"
|
203 |
+
type: "ReLU"
|
204 |
+
bottom: "conv3/dw"
|
205 |
+
top: "conv3/dw"
|
206 |
+
}
|
207 |
+
layer {
|
208 |
+
name: "conv3"
|
209 |
+
type: "Convolution"
|
210 |
+
bottom: "conv3/dw"
|
211 |
+
top: "conv3"
|
212 |
+
param {
|
213 |
+
lr_mult: 1.0
|
214 |
+
decay_mult: 1.0
|
215 |
+
}
|
216 |
+
param {
|
217 |
+
lr_mult: 2.0
|
218 |
+
decay_mult: 0.0
|
219 |
+
}
|
220 |
+
convolution_param {
|
221 |
+
num_output: 128
|
222 |
+
kernel_size: 1
|
223 |
+
weight_filler {
|
224 |
+
type: "msra"
|
225 |
+
}
|
226 |
+
bias_filler {
|
227 |
+
type: "constant"
|
228 |
+
value: 0.0
|
229 |
+
}
|
230 |
+
}
|
231 |
+
}
|
232 |
+
layer {
|
233 |
+
name: "conv3/relu"
|
234 |
+
type: "ReLU"
|
235 |
+
bottom: "conv3"
|
236 |
+
top: "conv3"
|
237 |
+
}
|
238 |
+
layer {
|
239 |
+
name: "conv4/dw"
|
240 |
+
type: "Convolution"
|
241 |
+
bottom: "conv3"
|
242 |
+
top: "conv4/dw"
|
243 |
+
param {
|
244 |
+
lr_mult: 1.0
|
245 |
+
decay_mult: 1.0
|
246 |
+
}
|
247 |
+
param {
|
248 |
+
lr_mult: 2.0
|
249 |
+
decay_mult: 0.0
|
250 |
+
}
|
251 |
+
convolution_param {
|
252 |
+
num_output: 128
|
253 |
+
pad: 1
|
254 |
+
kernel_size: 3
|
255 |
+
stride: 2
|
256 |
+
group: 128
|
257 |
+
engine: CAFFE
|
258 |
+
weight_filler {
|
259 |
+
type: "msra"
|
260 |
+
}
|
261 |
+
bias_filler {
|
262 |
+
type: "constant"
|
263 |
+
value: 0.0
|
264 |
+
}
|
265 |
+
}
|
266 |
+
}
|
267 |
+
layer {
|
268 |
+
name: "conv4/dw/relu"
|
269 |
+
type: "ReLU"
|
270 |
+
bottom: "conv4/dw"
|
271 |
+
top: "conv4/dw"
|
272 |
+
}
|
273 |
+
layer {
|
274 |
+
name: "conv4"
|
275 |
+
type: "Convolution"
|
276 |
+
bottom: "conv4/dw"
|
277 |
+
top: "conv4"
|
278 |
+
param {
|
279 |
+
lr_mult: 1.0
|
280 |
+
decay_mult: 1.0
|
281 |
+
}
|
282 |
+
param {
|
283 |
+
lr_mult: 2.0
|
284 |
+
decay_mult: 0.0
|
285 |
+
}
|
286 |
+
convolution_param {
|
287 |
+
num_output: 256
|
288 |
+
kernel_size: 1
|
289 |
+
weight_filler {
|
290 |
+
type: "msra"
|
291 |
+
}
|
292 |
+
bias_filler {
|
293 |
+
type: "constant"
|
294 |
+
value: 0.0
|
295 |
+
}
|
296 |
+
}
|
297 |
+
}
|
298 |
+
layer {
|
299 |
+
name: "conv4/relu"
|
300 |
+
type: "ReLU"
|
301 |
+
bottom: "conv4"
|
302 |
+
top: "conv4"
|
303 |
+
}
|
304 |
+
layer {
|
305 |
+
name: "conv5/dw"
|
306 |
+
type: "Convolution"
|
307 |
+
bottom: "conv4"
|
308 |
+
top: "conv5/dw"
|
309 |
+
param {
|
310 |
+
lr_mult: 1.0
|
311 |
+
decay_mult: 1.0
|
312 |
+
}
|
313 |
+
param {
|
314 |
+
lr_mult: 2.0
|
315 |
+
decay_mult: 0.0
|
316 |
+
}
|
317 |
+
convolution_param {
|
318 |
+
num_output: 256
|
319 |
+
pad: 1
|
320 |
+
kernel_size: 3
|
321 |
+
group: 256
|
322 |
+
engine: CAFFE
|
323 |
+
weight_filler {
|
324 |
+
type: "msra"
|
325 |
+
}
|
326 |
+
bias_filler {
|
327 |
+
type: "constant"
|
328 |
+
value: 0.0
|
329 |
+
}
|
330 |
+
}
|
331 |
+
}
|
332 |
+
layer {
|
333 |
+
name: "conv5/dw/relu"
|
334 |
+
type: "ReLU"
|
335 |
+
bottom: "conv5/dw"
|
336 |
+
top: "conv5/dw"
|
337 |
+
}
|
338 |
+
layer {
|
339 |
+
name: "conv5"
|
340 |
+
type: "Convolution"
|
341 |
+
bottom: "conv5/dw"
|
342 |
+
top: "conv5"
|
343 |
+
param {
|
344 |
+
lr_mult: 1.0
|
345 |
+
decay_mult: 1.0
|
346 |
+
}
|
347 |
+
param {
|
348 |
+
lr_mult: 2.0
|
349 |
+
decay_mult: 0.0
|
350 |
+
}
|
351 |
+
convolution_param {
|
352 |
+
num_output: 256
|
353 |
+
kernel_size: 1
|
354 |
+
weight_filler {
|
355 |
+
type: "msra"
|
356 |
+
}
|
357 |
+
bias_filler {
|
358 |
+
type: "constant"
|
359 |
+
value: 0.0
|
360 |
+
}
|
361 |
+
}
|
362 |
+
}
|
363 |
+
layer {
|
364 |
+
name: "conv5/relu"
|
365 |
+
type: "ReLU"
|
366 |
+
bottom: "conv5"
|
367 |
+
top: "conv5"
|
368 |
+
}
|
369 |
+
layer {
|
370 |
+
name: "conv6/dw"
|
371 |
+
type: "Convolution"
|
372 |
+
bottom: "conv5"
|
373 |
+
top: "conv6/dw"
|
374 |
+
param {
|
375 |
+
lr_mult: 1.0
|
376 |
+
decay_mult: 1.0
|
377 |
+
}
|
378 |
+
param {
|
379 |
+
lr_mult: 2.0
|
380 |
+
decay_mult: 0.0
|
381 |
+
}
|
382 |
+
convolution_param {
|
383 |
+
num_output: 256
|
384 |
+
pad: 1
|
385 |
+
kernel_size: 3
|
386 |
+
stride: 2
|
387 |
+
group: 256
|
388 |
+
engine: CAFFE
|
389 |
+
weight_filler {
|
390 |
+
type: "msra"
|
391 |
+
}
|
392 |
+
bias_filler {
|
393 |
+
type: "constant"
|
394 |
+
value: 0.0
|
395 |
+
}
|
396 |
+
}
|
397 |
+
}
|
398 |
+
layer {
|
399 |
+
name: "conv6/dw/relu"
|
400 |
+
type: "ReLU"
|
401 |
+
bottom: "conv6/dw"
|
402 |
+
top: "conv6/dw"
|
403 |
+
}
|
404 |
+
layer {
|
405 |
+
name: "conv6"
|
406 |
+
type: "Convolution"
|
407 |
+
bottom: "conv6/dw"
|
408 |
+
top: "conv6"
|
409 |
+
param {
|
410 |
+
lr_mult: 1.0
|
411 |
+
decay_mult: 1.0
|
412 |
+
}
|
413 |
+
param {
|
414 |
+
lr_mult: 2.0
|
415 |
+
decay_mult: 0.0
|
416 |
+
}
|
417 |
+
convolution_param {
|
418 |
+
num_output: 512
|
419 |
+
kernel_size: 1
|
420 |
+
weight_filler {
|
421 |
+
type: "msra"
|
422 |
+
}
|
423 |
+
bias_filler {
|
424 |
+
type: "constant"
|
425 |
+
value: 0.0
|
426 |
+
}
|
427 |
+
}
|
428 |
+
}
|
429 |
+
layer {
|
430 |
+
name: "conv6/relu"
|
431 |
+
type: "ReLU"
|
432 |
+
bottom: "conv6"
|
433 |
+
top: "conv6"
|
434 |
+
}
|
435 |
+
layer {
|
436 |
+
name: "conv7/dw"
|
437 |
+
type: "Convolution"
|
438 |
+
bottom: "conv6"
|
439 |
+
top: "conv7/dw"
|
440 |
+
param {
|
441 |
+
lr_mult: 1.0
|
442 |
+
decay_mult: 1.0
|
443 |
+
}
|
444 |
+
param {
|
445 |
+
lr_mult: 2.0
|
446 |
+
decay_mult: 0.0
|
447 |
+
}
|
448 |
+
convolution_param {
|
449 |
+
num_output: 512
|
450 |
+
pad: 1
|
451 |
+
kernel_size: 3
|
452 |
+
group: 512
|
453 |
+
engine: CAFFE
|
454 |
+
weight_filler {
|
455 |
+
type: "msra"
|
456 |
+
}
|
457 |
+
bias_filler {
|
458 |
+
type: "constant"
|
459 |
+
value: 0.0
|
460 |
+
}
|
461 |
+
}
|
462 |
+
}
|
463 |
+
layer {
|
464 |
+
name: "conv7/dw/relu"
|
465 |
+
type: "ReLU"
|
466 |
+
bottom: "conv7/dw"
|
467 |
+
top: "conv7/dw"
|
468 |
+
}
|
469 |
+
layer {
|
470 |
+
name: "conv7"
|
471 |
+
type: "Convolution"
|
472 |
+
bottom: "conv7/dw"
|
473 |
+
top: "conv7"
|
474 |
+
param {
|
475 |
+
lr_mult: 1.0
|
476 |
+
decay_mult: 1.0
|
477 |
+
}
|
478 |
+
param {
|
479 |
+
lr_mult: 2.0
|
480 |
+
decay_mult: 0.0
|
481 |
+
}
|
482 |
+
convolution_param {
|
483 |
+
num_output: 512
|
484 |
+
kernel_size: 1
|
485 |
+
weight_filler {
|
486 |
+
type: "msra"
|
487 |
+
}
|
488 |
+
bias_filler {
|
489 |
+
type: "constant"
|
490 |
+
value: 0.0
|
491 |
+
}
|
492 |
+
}
|
493 |
+
}
|
494 |
+
layer {
|
495 |
+
name: "conv7/relu"
|
496 |
+
type: "ReLU"
|
497 |
+
bottom: "conv7"
|
498 |
+
top: "conv7"
|
499 |
+
}
|
500 |
+
layer {
|
501 |
+
name: "conv8/dw"
|
502 |
+
type: "Convolution"
|
503 |
+
bottom: "conv7"
|
504 |
+
top: "conv8/dw"
|
505 |
+
param {
|
506 |
+
lr_mult: 1.0
|
507 |
+
decay_mult: 1.0
|
508 |
+
}
|
509 |
+
param {
|
510 |
+
lr_mult: 2.0
|
511 |
+
decay_mult: 0.0
|
512 |
+
}
|
513 |
+
convolution_param {
|
514 |
+
num_output: 512
|
515 |
+
pad: 1
|
516 |
+
kernel_size: 3
|
517 |
+
group: 512
|
518 |
+
engine: CAFFE
|
519 |
+
weight_filler {
|
520 |
+
type: "msra"
|
521 |
+
}
|
522 |
+
bias_filler {
|
523 |
+
type: "constant"
|
524 |
+
value: 0.0
|
525 |
+
}
|
526 |
+
}
|
527 |
+
}
|
528 |
+
layer {
|
529 |
+
name: "conv8/dw/relu"
|
530 |
+
type: "ReLU"
|
531 |
+
bottom: "conv8/dw"
|
532 |
+
top: "conv8/dw"
|
533 |
+
}
|
534 |
+
layer {
|
535 |
+
name: "conv8"
|
536 |
+
type: "Convolution"
|
537 |
+
bottom: "conv8/dw"
|
538 |
+
top: "conv8"
|
539 |
+
param {
|
540 |
+
lr_mult: 1.0
|
541 |
+
decay_mult: 1.0
|
542 |
+
}
|
543 |
+
param {
|
544 |
+
lr_mult: 2.0
|
545 |
+
decay_mult: 0.0
|
546 |
+
}
|
547 |
+
convolution_param {
|
548 |
+
num_output: 512
|
549 |
+
kernel_size: 1
|
550 |
+
weight_filler {
|
551 |
+
type: "msra"
|
552 |
+
}
|
553 |
+
bias_filler {
|
554 |
+
type: "constant"
|
555 |
+
value: 0.0
|
556 |
+
}
|
557 |
+
}
|
558 |
+
}
|
559 |
+
layer {
|
560 |
+
name: "conv8/relu"
|
561 |
+
type: "ReLU"
|
562 |
+
bottom: "conv8"
|
563 |
+
top: "conv8"
|
564 |
+
}
|
565 |
+
layer {
|
566 |
+
name: "conv9/dw"
|
567 |
+
type: "Convolution"
|
568 |
+
bottom: "conv8"
|
569 |
+
top: "conv9/dw"
|
570 |
+
param {
|
571 |
+
lr_mult: 1.0
|
572 |
+
decay_mult: 1.0
|
573 |
+
}
|
574 |
+
param {
|
575 |
+
lr_mult: 2.0
|
576 |
+
decay_mult: 0.0
|
577 |
+
}
|
578 |
+
convolution_param {
|
579 |
+
num_output: 512
|
580 |
+
pad: 1
|
581 |
+
kernel_size: 3
|
582 |
+
group: 512
|
583 |
+
engine: CAFFE
|
584 |
+
weight_filler {
|
585 |
+
type: "msra"
|
586 |
+
}
|
587 |
+
bias_filler {
|
588 |
+
type: "constant"
|
589 |
+
value: 0.0
|
590 |
+
}
|
591 |
+
}
|
592 |
+
}
|
593 |
+
layer {
|
594 |
+
name: "conv9/dw/relu"
|
595 |
+
type: "ReLU"
|
596 |
+
bottom: "conv9/dw"
|
597 |
+
top: "conv9/dw"
|
598 |
+
}
|
599 |
+
layer {
|
600 |
+
name: "conv9"
|
601 |
+
type: "Convolution"
|
602 |
+
bottom: "conv9/dw"
|
603 |
+
top: "conv9"
|
604 |
+
param {
|
605 |
+
lr_mult: 1.0
|
606 |
+
decay_mult: 1.0
|
607 |
+
}
|
608 |
+
param {
|
609 |
+
lr_mult: 2.0
|
610 |
+
decay_mult: 0.0
|
611 |
+
}
|
612 |
+
convolution_param {
|
613 |
+
num_output: 512
|
614 |
+
kernel_size: 1
|
615 |
+
weight_filler {
|
616 |
+
type: "msra"
|
617 |
+
}
|
618 |
+
bias_filler {
|
619 |
+
type: "constant"
|
620 |
+
value: 0.0
|
621 |
+
}
|
622 |
+
}
|
623 |
+
}
|
624 |
+
layer {
|
625 |
+
name: "conv9/relu"
|
626 |
+
type: "ReLU"
|
627 |
+
bottom: "conv9"
|
628 |
+
top: "conv9"
|
629 |
+
}
|
630 |
+
layer {
|
631 |
+
name: "conv10/dw"
|
632 |
+
type: "Convolution"
|
633 |
+
bottom: "conv9"
|
634 |
+
top: "conv10/dw"
|
635 |
+
param {
|
636 |
+
lr_mult: 1.0
|
637 |
+
decay_mult: 1.0
|
638 |
+
}
|
639 |
+
param {
|
640 |
+
lr_mult: 2.0
|
641 |
+
decay_mult: 0.0
|
642 |
+
}
|
643 |
+
convolution_param {
|
644 |
+
num_output: 512
|
645 |
+
pad: 1
|
646 |
+
kernel_size: 3
|
647 |
+
group: 512
|
648 |
+
engine: CAFFE
|
649 |
+
weight_filler {
|
650 |
+
type: "msra"
|
651 |
+
}
|
652 |
+
bias_filler {
|
653 |
+
type: "constant"
|
654 |
+
value: 0.0
|
655 |
+
}
|
656 |
+
}
|
657 |
+
}
|
658 |
+
layer {
|
659 |
+
name: "conv10/dw/relu"
|
660 |
+
type: "ReLU"
|
661 |
+
bottom: "conv10/dw"
|
662 |
+
top: "conv10/dw"
|
663 |
+
}
|
664 |
+
layer {
|
665 |
+
name: "conv10"
|
666 |
+
type: "Convolution"
|
667 |
+
bottom: "conv10/dw"
|
668 |
+
top: "conv10"
|
669 |
+
param {
|
670 |
+
lr_mult: 1.0
|
671 |
+
decay_mult: 1.0
|
672 |
+
}
|
673 |
+
param {
|
674 |
+
lr_mult: 2.0
|
675 |
+
decay_mult: 0.0
|
676 |
+
}
|
677 |
+
convolution_param {
|
678 |
+
num_output: 512
|
679 |
+
kernel_size: 1
|
680 |
+
weight_filler {
|
681 |
+
type: "msra"
|
682 |
+
}
|
683 |
+
bias_filler {
|
684 |
+
type: "constant"
|
685 |
+
value: 0.0
|
686 |
+
}
|
687 |
+
}
|
688 |
+
}
|
689 |
+
layer {
|
690 |
+
name: "conv10/relu"
|
691 |
+
type: "ReLU"
|
692 |
+
bottom: "conv10"
|
693 |
+
top: "conv10"
|
694 |
+
}
|
695 |
+
layer {
|
696 |
+
name: "conv11/dw"
|
697 |
+
type: "Convolution"
|
698 |
+
bottom: "conv10"
|
699 |
+
top: "conv11/dw"
|
700 |
+
param {
|
701 |
+
lr_mult: 1.0
|
702 |
+
decay_mult: 1.0
|
703 |
+
}
|
704 |
+
param {
|
705 |
+
lr_mult: 2.0
|
706 |
+
decay_mult: 0.0
|
707 |
+
}
|
708 |
+
convolution_param {
|
709 |
+
num_output: 512
|
710 |
+
pad: 1
|
711 |
+
kernel_size: 3
|
712 |
+
group: 512
|
713 |
+
engine: CAFFE
|
714 |
+
weight_filler {
|
715 |
+
type: "msra"
|
716 |
+
}
|
717 |
+
bias_filler {
|
718 |
+
type: "constant"
|
719 |
+
value: 0.0
|
720 |
+
}
|
721 |
+
}
|
722 |
+
}
|
723 |
+
layer {
|
724 |
+
name: "conv11/dw/relu"
|
725 |
+
type: "ReLU"
|
726 |
+
bottom: "conv11/dw"
|
727 |
+
top: "conv11/dw"
|
728 |
+
}
|
729 |
+
layer {
|
730 |
+
name: "conv11"
|
731 |
+
type: "Convolution"
|
732 |
+
bottom: "conv11/dw"
|
733 |
+
top: "conv11"
|
734 |
+
param {
|
735 |
+
lr_mult: 1.0
|
736 |
+
decay_mult: 1.0
|
737 |
+
}
|
738 |
+
param {
|
739 |
+
lr_mult: 2.0
|
740 |
+
decay_mult: 0.0
|
741 |
+
}
|
742 |
+
convolution_param {
|
743 |
+
num_output: 512
|
744 |
+
kernel_size: 1
|
745 |
+
weight_filler {
|
746 |
+
type: "msra"
|
747 |
+
}
|
748 |
+
bias_filler {
|
749 |
+
type: "constant"
|
750 |
+
value: 0.0
|
751 |
+
}
|
752 |
+
}
|
753 |
+
}
|
754 |
+
layer {
|
755 |
+
name: "conv11/relu"
|
756 |
+
type: "ReLU"
|
757 |
+
bottom: "conv11"
|
758 |
+
top: "conv11"
|
759 |
+
}
|
760 |
+
layer {
|
761 |
+
name: "conv12/dw"
|
762 |
+
type: "Convolution"
|
763 |
+
bottom: "conv11"
|
764 |
+
top: "conv12/dw"
|
765 |
+
param {
|
766 |
+
lr_mult: 1.0
|
767 |
+
decay_mult: 1.0
|
768 |
+
}
|
769 |
+
param {
|
770 |
+
lr_mult: 2.0
|
771 |
+
decay_mult: 0.0
|
772 |
+
}
|
773 |
+
convolution_param {
|
774 |
+
num_output: 512
|
775 |
+
pad: 1
|
776 |
+
kernel_size: 3
|
777 |
+
stride: 2
|
778 |
+
group: 512
|
779 |
+
engine: CAFFE
|
780 |
+
weight_filler {
|
781 |
+
type: "msra"
|
782 |
+
}
|
783 |
+
bias_filler {
|
784 |
+
type: "constant"
|
785 |
+
value: 0.0
|
786 |
+
}
|
787 |
+
}
|
788 |
+
}
|
789 |
+
layer {
|
790 |
+
name: "conv12/dw/relu"
|
791 |
+
type: "ReLU"
|
792 |
+
bottom: "conv12/dw"
|
793 |
+
top: "conv12/dw"
|
794 |
+
}
|
795 |
+
layer {
|
796 |
+
name: "conv12"
|
797 |
+
type: "Convolution"
|
798 |
+
bottom: "conv12/dw"
|
799 |
+
top: "conv12"
|
800 |
+
param {
|
801 |
+
lr_mult: 1.0
|
802 |
+
decay_mult: 1.0
|
803 |
+
}
|
804 |
+
param {
|
805 |
+
lr_mult: 2.0
|
806 |
+
decay_mult: 0.0
|
807 |
+
}
|
808 |
+
convolution_param {
|
809 |
+
num_output: 1024
|
810 |
+
kernel_size: 1
|
811 |
+
weight_filler {
|
812 |
+
type: "msra"
|
813 |
+
}
|
814 |
+
bias_filler {
|
815 |
+
type: "constant"
|
816 |
+
value: 0.0
|
817 |
+
}
|
818 |
+
}
|
819 |
+
}
|
820 |
+
layer {
|
821 |
+
name: "conv12/relu"
|
822 |
+
type: "ReLU"
|
823 |
+
bottom: "conv12"
|
824 |
+
top: "conv12"
|
825 |
+
}
|
826 |
+
layer {
|
827 |
+
name: "conv13/dw"
|
828 |
+
type: "Convolution"
|
829 |
+
bottom: "conv12"
|
830 |
+
top: "conv13/dw"
|
831 |
+
param {
|
832 |
+
lr_mult: 1.0
|
833 |
+
decay_mult: 1.0
|
834 |
+
}
|
835 |
+
param {
|
836 |
+
lr_mult: 2.0
|
837 |
+
decay_mult: 0.0
|
838 |
+
}
|
839 |
+
convolution_param {
|
840 |
+
num_output: 1024
|
841 |
+
pad: 1
|
842 |
+
kernel_size: 3
|
843 |
+
group: 1024
|
844 |
+
engine: CAFFE
|
845 |
+
weight_filler {
|
846 |
+
type: "msra"
|
847 |
+
}
|
848 |
+
bias_filler {
|
849 |
+
type: "constant"
|
850 |
+
value: 0.0
|
851 |
+
}
|
852 |
+
}
|
853 |
+
}
|
854 |
+
layer {
|
855 |
+
name: "conv13/dw/relu"
|
856 |
+
type: "ReLU"
|
857 |
+
bottom: "conv13/dw"
|
858 |
+
top: "conv13/dw"
|
859 |
+
}
|
860 |
+
layer {
|
861 |
+
name: "conv13"
|
862 |
+
type: "Convolution"
|
863 |
+
bottom: "conv13/dw"
|
864 |
+
top: "conv13"
|
865 |
+
param {
|
866 |
+
lr_mult: 1.0
|
867 |
+
decay_mult: 1.0
|
868 |
+
}
|
869 |
+
param {
|
870 |
+
lr_mult: 2.0
|
871 |
+
decay_mult: 0.0
|
872 |
+
}
|
873 |
+
convolution_param {
|
874 |
+
num_output: 1024
|
875 |
+
kernel_size: 1
|
876 |
+
weight_filler {
|
877 |
+
type: "msra"
|
878 |
+
}
|
879 |
+
bias_filler {
|
880 |
+
type: "constant"
|
881 |
+
value: 0.0
|
882 |
+
}
|
883 |
+
}
|
884 |
+
}
|
885 |
+
layer {
|
886 |
+
name: "conv13/relu"
|
887 |
+
type: "ReLU"
|
888 |
+
bottom: "conv13"
|
889 |
+
top: "conv13"
|
890 |
+
}
|
891 |
+
layer {
|
892 |
+
name: "conv14_1"
|
893 |
+
type: "Convolution"
|
894 |
+
bottom: "conv13"
|
895 |
+
top: "conv14_1"
|
896 |
+
param {
|
897 |
+
lr_mult: 1.0
|
898 |
+
decay_mult: 1.0
|
899 |
+
}
|
900 |
+
param {
|
901 |
+
lr_mult: 2.0
|
902 |
+
decay_mult: 0.0
|
903 |
+
}
|
904 |
+
convolution_param {
|
905 |
+
num_output: 256
|
906 |
+
kernel_size: 1
|
907 |
+
weight_filler {
|
908 |
+
type: "msra"
|
909 |
+
}
|
910 |
+
bias_filler {
|
911 |
+
type: "constant"
|
912 |
+
value: 0.0
|
913 |
+
}
|
914 |
+
}
|
915 |
+
}
|
916 |
+
layer {
|
917 |
+
name: "conv14_1/relu"
|
918 |
+
type: "ReLU"
|
919 |
+
bottom: "conv14_1"
|
920 |
+
top: "conv14_1"
|
921 |
+
}
|
922 |
+
layer {
|
923 |
+
name: "conv14_2"
|
924 |
+
type: "Convolution"
|
925 |
+
bottom: "conv14_1"
|
926 |
+
top: "conv14_2"
|
927 |
+
param {
|
928 |
+
lr_mult: 1.0
|
929 |
+
decay_mult: 1.0
|
930 |
+
}
|
931 |
+
param {
|
932 |
+
lr_mult: 2.0
|
933 |
+
decay_mult: 0.0
|
934 |
+
}
|
935 |
+
convolution_param {
|
936 |
+
num_output: 512
|
937 |
+
pad: 1
|
938 |
+
kernel_size: 3
|
939 |
+
stride: 2
|
940 |
+
weight_filler {
|
941 |
+
type: "msra"
|
942 |
+
}
|
943 |
+
bias_filler {
|
944 |
+
type: "constant"
|
945 |
+
value: 0.0
|
946 |
+
}
|
947 |
+
}
|
948 |
+
}
|
949 |
+
layer {
|
950 |
+
name: "conv14_2/relu"
|
951 |
+
type: "ReLU"
|
952 |
+
bottom: "conv14_2"
|
953 |
+
top: "conv14_2"
|
954 |
+
}
|
955 |
+
layer {
|
956 |
+
name: "conv15_1"
|
957 |
+
type: "Convolution"
|
958 |
+
bottom: "conv14_2"
|
959 |
+
top: "conv15_1"
|
960 |
+
param {
|
961 |
+
lr_mult: 1.0
|
962 |
+
decay_mult: 1.0
|
963 |
+
}
|
964 |
+
param {
|
965 |
+
lr_mult: 2.0
|
966 |
+
decay_mult: 0.0
|
967 |
+
}
|
968 |
+
convolution_param {
|
969 |
+
num_output: 128
|
970 |
+
kernel_size: 1
|
971 |
+
weight_filler {
|
972 |
+
type: "msra"
|
973 |
+
}
|
974 |
+
bias_filler {
|
975 |
+
type: "constant"
|
976 |
+
value: 0.0
|
977 |
+
}
|
978 |
+
}
|
979 |
+
}
|
980 |
+
layer {
|
981 |
+
name: "conv15_1/relu"
|
982 |
+
type: "ReLU"
|
983 |
+
bottom: "conv15_1"
|
984 |
+
top: "conv15_1"
|
985 |
+
}
|
986 |
+
layer {
|
987 |
+
name: "conv15_2"
|
988 |
+
type: "Convolution"
|
989 |
+
bottom: "conv15_1"
|
990 |
+
top: "conv15_2"
|
991 |
+
param {
|
992 |
+
lr_mult: 1.0
|
993 |
+
decay_mult: 1.0
|
994 |
+
}
|
995 |
+
param {
|
996 |
+
lr_mult: 2.0
|
997 |
+
decay_mult: 0.0
|
998 |
+
}
|
999 |
+
convolution_param {
|
1000 |
+
num_output: 256
|
1001 |
+
pad: 1
|
1002 |
+
kernel_size: 3
|
1003 |
+
stride: 2
|
1004 |
+
weight_filler {
|
1005 |
+
type: "msra"
|
1006 |
+
}
|
1007 |
+
bias_filler {
|
1008 |
+
type: "constant"
|
1009 |
+
value: 0.0
|
1010 |
+
}
|
1011 |
+
}
|
1012 |
+
}
|
1013 |
+
layer {
|
1014 |
+
name: "conv15_2/relu"
|
1015 |
+
type: "ReLU"
|
1016 |
+
bottom: "conv15_2"
|
1017 |
+
top: "conv15_2"
|
1018 |
+
}
|
1019 |
+
layer {
|
1020 |
+
name: "conv16_1"
|
1021 |
+
type: "Convolution"
|
1022 |
+
bottom: "conv15_2"
|
1023 |
+
top: "conv16_1"
|
1024 |
+
param {
|
1025 |
+
lr_mult: 1.0
|
1026 |
+
decay_mult: 1.0
|
1027 |
+
}
|
1028 |
+
param {
|
1029 |
+
lr_mult: 2.0
|
1030 |
+
decay_mult: 0.0
|
1031 |
+
}
|
1032 |
+
convolution_param {
|
1033 |
+
num_output: 128
|
1034 |
+
kernel_size: 1
|
1035 |
+
weight_filler {
|
1036 |
+
type: "msra"
|
1037 |
+
}
|
1038 |
+
bias_filler {
|
1039 |
+
type: "constant"
|
1040 |
+
value: 0.0
|
1041 |
+
}
|
1042 |
+
}
|
1043 |
+
}
|
1044 |
+
layer {
|
1045 |
+
name: "conv16_1/relu"
|
1046 |
+
type: "ReLU"
|
1047 |
+
bottom: "conv16_1"
|
1048 |
+
top: "conv16_1"
|
1049 |
+
}
|
1050 |
+
layer {
|
1051 |
+
name: "conv16_2"
|
1052 |
+
type: "Convolution"
|
1053 |
+
bottom: "conv16_1"
|
1054 |
+
top: "conv16_2"
|
1055 |
+
param {
|
1056 |
+
lr_mult: 1.0
|
1057 |
+
decay_mult: 1.0
|
1058 |
+
}
|
1059 |
+
param {
|
1060 |
+
lr_mult: 2.0
|
1061 |
+
decay_mult: 0.0
|
1062 |
+
}
|
1063 |
+
convolution_param {
|
1064 |
+
num_output: 256
|
1065 |
+
pad: 1
|
1066 |
+
kernel_size: 3
|
1067 |
+
stride: 2
|
1068 |
+
weight_filler {
|
1069 |
+
type: "msra"
|
1070 |
+
}
|
1071 |
+
bias_filler {
|
1072 |
+
type: "constant"
|
1073 |
+
value: 0.0
|
1074 |
+
}
|
1075 |
+
}
|
1076 |
+
}
|
1077 |
+
layer {
|
1078 |
+
name: "conv16_2/relu"
|
1079 |
+
type: "ReLU"
|
1080 |
+
bottom: "conv16_2"
|
1081 |
+
top: "conv16_2"
|
1082 |
+
}
|
1083 |
+
layer {
|
1084 |
+
name: "conv17_1"
|
1085 |
+
type: "Convolution"
|
1086 |
+
bottom: "conv16_2"
|
1087 |
+
top: "conv17_1"
|
1088 |
+
param {
|
1089 |
+
lr_mult: 1.0
|
1090 |
+
decay_mult: 1.0
|
1091 |
+
}
|
1092 |
+
param {
|
1093 |
+
lr_mult: 2.0
|
1094 |
+
decay_mult: 0.0
|
1095 |
+
}
|
1096 |
+
convolution_param {
|
1097 |
+
num_output: 64
|
1098 |
+
kernel_size: 1
|
1099 |
+
weight_filler {
|
1100 |
+
type: "msra"
|
1101 |
+
}
|
1102 |
+
bias_filler {
|
1103 |
+
type: "constant"
|
1104 |
+
value: 0.0
|
1105 |
+
}
|
1106 |
+
}
|
1107 |
+
}
|
1108 |
+
layer {
|
1109 |
+
name: "conv17_1/relu"
|
1110 |
+
type: "ReLU"
|
1111 |
+
bottom: "conv17_1"
|
1112 |
+
top: "conv17_1"
|
1113 |
+
}
|
1114 |
+
layer {
|
1115 |
+
name: "conv17_2"
|
1116 |
+
type: "Convolution"
|
1117 |
+
bottom: "conv17_1"
|
1118 |
+
top: "conv17_2"
|
1119 |
+
param {
|
1120 |
+
lr_mult: 1.0
|
1121 |
+
decay_mult: 1.0
|
1122 |
+
}
|
1123 |
+
param {
|
1124 |
+
lr_mult: 2.0
|
1125 |
+
decay_mult: 0.0
|
1126 |
+
}
|
1127 |
+
convolution_param {
|
1128 |
+
num_output: 128
|
1129 |
+
pad: 1
|
1130 |
+
kernel_size: 3
|
1131 |
+
stride: 2
|
1132 |
+
weight_filler {
|
1133 |
+
type: "msra"
|
1134 |
+
}
|
1135 |
+
bias_filler {
|
1136 |
+
type: "constant"
|
1137 |
+
value: 0.0
|
1138 |
+
}
|
1139 |
+
}
|
1140 |
+
}
|
1141 |
+
layer {
|
1142 |
+
name: "conv17_2/relu"
|
1143 |
+
type: "ReLU"
|
1144 |
+
bottom: "conv17_2"
|
1145 |
+
top: "conv17_2"
|
1146 |
+
}
|
1147 |
+
layer {
|
1148 |
+
name: "conv11_mbox_loc"
|
1149 |
+
type: "Convolution"
|
1150 |
+
bottom: "conv11"
|
1151 |
+
top: "conv11_mbox_loc"
|
1152 |
+
param {
|
1153 |
+
lr_mult: 1.0
|
1154 |
+
decay_mult: 1.0
|
1155 |
+
}
|
1156 |
+
param {
|
1157 |
+
lr_mult: 2.0
|
1158 |
+
decay_mult: 0.0
|
1159 |
+
}
|
1160 |
+
convolution_param {
|
1161 |
+
num_output: 12
|
1162 |
+
kernel_size: 1
|
1163 |
+
weight_filler {
|
1164 |
+
type: "msra"
|
1165 |
+
}
|
1166 |
+
bias_filler {
|
1167 |
+
type: "constant"
|
1168 |
+
value: 0.0
|
1169 |
+
}
|
1170 |
+
}
|
1171 |
+
}
|
1172 |
+
layer {
|
1173 |
+
name: "conv11_mbox_loc_perm"
|
1174 |
+
type: "Permute"
|
1175 |
+
bottom: "conv11_mbox_loc"
|
1176 |
+
top: "conv11_mbox_loc_perm"
|
1177 |
+
permute_param {
|
1178 |
+
order: 0
|
1179 |
+
order: 2
|
1180 |
+
order: 3
|
1181 |
+
order: 1
|
1182 |
+
}
|
1183 |
+
}
|
1184 |
+
layer {
|
1185 |
+
name: "conv11_mbox_loc_flat"
|
1186 |
+
type: "Flatten"
|
1187 |
+
bottom: "conv11_mbox_loc_perm"
|
1188 |
+
top: "conv11_mbox_loc_flat"
|
1189 |
+
flatten_param {
|
1190 |
+
axis: 1
|
1191 |
+
}
|
1192 |
+
}
|
1193 |
+
layer {
|
1194 |
+
name: "conv11_mbox_conf"
|
1195 |
+
type: "Convolution"
|
1196 |
+
bottom: "conv11"
|
1197 |
+
top: "conv11_mbox_conf"
|
1198 |
+
param {
|
1199 |
+
lr_mult: 1.0
|
1200 |
+
decay_mult: 1.0
|
1201 |
+
}
|
1202 |
+
param {
|
1203 |
+
lr_mult: 2.0
|
1204 |
+
decay_mult: 0.0
|
1205 |
+
}
|
1206 |
+
convolution_param {
|
1207 |
+
num_output: 63
|
1208 |
+
kernel_size: 1
|
1209 |
+
weight_filler {
|
1210 |
+
type: "msra"
|
1211 |
+
}
|
1212 |
+
bias_filler {
|
1213 |
+
type: "constant"
|
1214 |
+
value: 0.0
|
1215 |
+
}
|
1216 |
+
}
|
1217 |
+
}
|
1218 |
+
layer {
|
1219 |
+
name: "conv11_mbox_conf_perm"
|
1220 |
+
type: "Permute"
|
1221 |
+
bottom: "conv11_mbox_conf"
|
1222 |
+
top: "conv11_mbox_conf_perm"
|
1223 |
+
permute_param {
|
1224 |
+
order: 0
|
1225 |
+
order: 2
|
1226 |
+
order: 3
|
1227 |
+
order: 1
|
1228 |
+
}
|
1229 |
+
}
|
1230 |
+
layer {
|
1231 |
+
name: "conv11_mbox_conf_flat"
|
1232 |
+
type: "Flatten"
|
1233 |
+
bottom: "conv11_mbox_conf_perm"
|
1234 |
+
top: "conv11_mbox_conf_flat"
|
1235 |
+
flatten_param {
|
1236 |
+
axis: 1
|
1237 |
+
}
|
1238 |
+
}
|
1239 |
+
layer {
|
1240 |
+
name: "conv11_mbox_priorbox"
|
1241 |
+
type: "PriorBox"
|
1242 |
+
bottom: "conv11"
|
1243 |
+
bottom: "data"
|
1244 |
+
top: "conv11_mbox_priorbox"
|
1245 |
+
prior_box_param {
|
1246 |
+
min_size: 60.0
|
1247 |
+
aspect_ratio: 2.0
|
1248 |
+
flip: true
|
1249 |
+
clip: false
|
1250 |
+
variance: 0.1
|
1251 |
+
variance: 0.1
|
1252 |
+
variance: 0.2
|
1253 |
+
variance: 0.2
|
1254 |
+
offset: 0.5
|
1255 |
+
}
|
1256 |
+
}
|
1257 |
+
layer {
|
1258 |
+
name: "conv13_mbox_loc"
|
1259 |
+
type: "Convolution"
|
1260 |
+
bottom: "conv13"
|
1261 |
+
top: "conv13_mbox_loc"
|
1262 |
+
param {
|
1263 |
+
lr_mult: 1.0
|
1264 |
+
decay_mult: 1.0
|
1265 |
+
}
|
1266 |
+
param {
|
1267 |
+
lr_mult: 2.0
|
1268 |
+
decay_mult: 0.0
|
1269 |
+
}
|
1270 |
+
convolution_param {
|
1271 |
+
num_output: 24
|
1272 |
+
kernel_size: 1
|
1273 |
+
weight_filler {
|
1274 |
+
type: "msra"
|
1275 |
+
}
|
1276 |
+
bias_filler {
|
1277 |
+
type: "constant"
|
1278 |
+
value: 0.0
|
1279 |
+
}
|
1280 |
+
}
|
1281 |
+
}
|
1282 |
+
layer {
|
1283 |
+
name: "conv13_mbox_loc_perm"
|
1284 |
+
type: "Permute"
|
1285 |
+
bottom: "conv13_mbox_loc"
|
1286 |
+
top: "conv13_mbox_loc_perm"
|
1287 |
+
permute_param {
|
1288 |
+
order: 0
|
1289 |
+
order: 2
|
1290 |
+
order: 3
|
1291 |
+
order: 1
|
1292 |
+
}
|
1293 |
+
}
|
1294 |
+
layer {
|
1295 |
+
name: "conv13_mbox_loc_flat"
|
1296 |
+
type: "Flatten"
|
1297 |
+
bottom: "conv13_mbox_loc_perm"
|
1298 |
+
top: "conv13_mbox_loc_flat"
|
1299 |
+
flatten_param {
|
1300 |
+
axis: 1
|
1301 |
+
}
|
1302 |
+
}
|
1303 |
+
layer {
|
1304 |
+
name: "conv13_mbox_conf"
|
1305 |
+
type: "Convolution"
|
1306 |
+
bottom: "conv13"
|
1307 |
+
top: "conv13_mbox_conf"
|
1308 |
+
param {
|
1309 |
+
lr_mult: 1.0
|
1310 |
+
decay_mult: 1.0
|
1311 |
+
}
|
1312 |
+
param {
|
1313 |
+
lr_mult: 2.0
|
1314 |
+
decay_mult: 0.0
|
1315 |
+
}
|
1316 |
+
convolution_param {
|
1317 |
+
num_output: 126
|
1318 |
+
kernel_size: 1
|
1319 |
+
weight_filler {
|
1320 |
+
type: "msra"
|
1321 |
+
}
|
1322 |
+
bias_filler {
|
1323 |
+
type: "constant"
|
1324 |
+
value: 0.0
|
1325 |
+
}
|
1326 |
+
}
|
1327 |
+
}
|
1328 |
+
layer {
|
1329 |
+
name: "conv13_mbox_conf_perm"
|
1330 |
+
type: "Permute"
|
1331 |
+
bottom: "conv13_mbox_conf"
|
1332 |
+
top: "conv13_mbox_conf_perm"
|
1333 |
+
permute_param {
|
1334 |
+
order: 0
|
1335 |
+
order: 2
|
1336 |
+
order: 3
|
1337 |
+
order: 1
|
1338 |
+
}
|
1339 |
+
}
|
1340 |
+
layer {
|
1341 |
+
name: "conv13_mbox_conf_flat"
|
1342 |
+
type: "Flatten"
|
1343 |
+
bottom: "conv13_mbox_conf_perm"
|
1344 |
+
top: "conv13_mbox_conf_flat"
|
1345 |
+
flatten_param {
|
1346 |
+
axis: 1
|
1347 |
+
}
|
1348 |
+
}
|
1349 |
+
layer {
|
1350 |
+
name: "conv13_mbox_priorbox"
|
1351 |
+
type: "PriorBox"
|
1352 |
+
bottom: "conv13"
|
1353 |
+
bottom: "data"
|
1354 |
+
top: "conv13_mbox_priorbox"
|
1355 |
+
prior_box_param {
|
1356 |
+
min_size: 105.0
|
1357 |
+
max_size: 150.0
|
1358 |
+
aspect_ratio: 2.0
|
1359 |
+
aspect_ratio: 3.0
|
1360 |
+
flip: true
|
1361 |
+
clip: false
|
1362 |
+
variance: 0.1
|
1363 |
+
variance: 0.1
|
1364 |
+
variance: 0.2
|
1365 |
+
variance: 0.2
|
1366 |
+
offset: 0.5
|
1367 |
+
}
|
1368 |
+
}
|
1369 |
+
layer {
|
1370 |
+
name: "conv14_2_mbox_loc"
|
1371 |
+
type: "Convolution"
|
1372 |
+
bottom: "conv14_2"
|
1373 |
+
top: "conv14_2_mbox_loc"
|
1374 |
+
param {
|
1375 |
+
lr_mult: 1.0
|
1376 |
+
decay_mult: 1.0
|
1377 |
+
}
|
1378 |
+
param {
|
1379 |
+
lr_mult: 2.0
|
1380 |
+
decay_mult: 0.0
|
1381 |
+
}
|
1382 |
+
convolution_param {
|
1383 |
+
num_output: 24
|
1384 |
+
kernel_size: 1
|
1385 |
+
weight_filler {
|
1386 |
+
type: "msra"
|
1387 |
+
}
|
1388 |
+
bias_filler {
|
1389 |
+
type: "constant"
|
1390 |
+
value: 0.0
|
1391 |
+
}
|
1392 |
+
}
|
1393 |
+
}
|
1394 |
+
layer {
|
1395 |
+
name: "conv14_2_mbox_loc_perm"
|
1396 |
+
type: "Permute"
|
1397 |
+
bottom: "conv14_2_mbox_loc"
|
1398 |
+
top: "conv14_2_mbox_loc_perm"
|
1399 |
+
permute_param {
|
1400 |
+
order: 0
|
1401 |
+
order: 2
|
1402 |
+
order: 3
|
1403 |
+
order: 1
|
1404 |
+
}
|
1405 |
+
}
|
1406 |
+
layer {
|
1407 |
+
name: "conv14_2_mbox_loc_flat"
|
1408 |
+
type: "Flatten"
|
1409 |
+
bottom: "conv14_2_mbox_loc_perm"
|
1410 |
+
top: "conv14_2_mbox_loc_flat"
|
1411 |
+
flatten_param {
|
1412 |
+
axis: 1
|
1413 |
+
}
|
1414 |
+
}
|
1415 |
+
layer {
|
1416 |
+
name: "conv14_2_mbox_conf"
|
1417 |
+
type: "Convolution"
|
1418 |
+
bottom: "conv14_2"
|
1419 |
+
top: "conv14_2_mbox_conf"
|
1420 |
+
param {
|
1421 |
+
lr_mult: 1.0
|
1422 |
+
decay_mult: 1.0
|
1423 |
+
}
|
1424 |
+
param {
|
1425 |
+
lr_mult: 2.0
|
1426 |
+
decay_mult: 0.0
|
1427 |
+
}
|
1428 |
+
convolution_param {
|
1429 |
+
num_output: 126
|
1430 |
+
kernel_size: 1
|
1431 |
+
weight_filler {
|
1432 |
+
type: "msra"
|
1433 |
+
}
|
1434 |
+
bias_filler {
|
1435 |
+
type: "constant"
|
1436 |
+
value: 0.0
|
1437 |
+
}
|
1438 |
+
}
|
1439 |
+
}
|
1440 |
+
layer {
|
1441 |
+
name: "conv14_2_mbox_conf_perm"
|
1442 |
+
type: "Permute"
|
1443 |
+
bottom: "conv14_2_mbox_conf"
|
1444 |
+
top: "conv14_2_mbox_conf_perm"
|
1445 |
+
permute_param {
|
1446 |
+
order: 0
|
1447 |
+
order: 2
|
1448 |
+
order: 3
|
1449 |
+
order: 1
|
1450 |
+
}
|
1451 |
+
}
|
1452 |
+
layer {
|
1453 |
+
name: "conv14_2_mbox_conf_flat"
|
1454 |
+
type: "Flatten"
|
1455 |
+
bottom: "conv14_2_mbox_conf_perm"
|
1456 |
+
top: "conv14_2_mbox_conf_flat"
|
1457 |
+
flatten_param {
|
1458 |
+
axis: 1
|
1459 |
+
}
|
1460 |
+
}
|
1461 |
+
layer {
|
1462 |
+
name: "conv14_2_mbox_priorbox"
|
1463 |
+
type: "PriorBox"
|
1464 |
+
bottom: "conv14_2"
|
1465 |
+
bottom: "data"
|
1466 |
+
top: "conv14_2_mbox_priorbox"
|
1467 |
+
prior_box_param {
|
1468 |
+
min_size: 150.0
|
1469 |
+
max_size: 195.0
|
1470 |
+
aspect_ratio: 2.0
|
1471 |
+
aspect_ratio: 3.0
|
1472 |
+
flip: true
|
1473 |
+
clip: false
|
1474 |
+
variance: 0.1
|
1475 |
+
variance: 0.1
|
1476 |
+
variance: 0.2
|
1477 |
+
variance: 0.2
|
1478 |
+
offset: 0.5
|
1479 |
+
}
|
1480 |
+
}
|
1481 |
+
layer {
|
1482 |
+
name: "conv15_2_mbox_loc"
|
1483 |
+
type: "Convolution"
|
1484 |
+
bottom: "conv15_2"
|
1485 |
+
top: "conv15_2_mbox_loc"
|
1486 |
+
param {
|
1487 |
+
lr_mult: 1.0
|
1488 |
+
decay_mult: 1.0
|
1489 |
+
}
|
1490 |
+
param {
|
1491 |
+
lr_mult: 2.0
|
1492 |
+
decay_mult: 0.0
|
1493 |
+
}
|
1494 |
+
convolution_param {
|
1495 |
+
num_output: 24
|
1496 |
+
kernel_size: 1
|
1497 |
+
weight_filler {
|
1498 |
+
type: "msra"
|
1499 |
+
}
|
1500 |
+
bias_filler {
|
1501 |
+
type: "constant"
|
1502 |
+
value: 0.0
|
1503 |
+
}
|
1504 |
+
}
|
1505 |
+
}
|
1506 |
+
layer {
|
1507 |
+
name: "conv15_2_mbox_loc_perm"
|
1508 |
+
type: "Permute"
|
1509 |
+
bottom: "conv15_2_mbox_loc"
|
1510 |
+
top: "conv15_2_mbox_loc_perm"
|
1511 |
+
permute_param {
|
1512 |
+
order: 0
|
1513 |
+
order: 2
|
1514 |
+
order: 3
|
1515 |
+
order: 1
|
1516 |
+
}
|
1517 |
+
}
|
1518 |
+
layer {
|
1519 |
+
name: "conv15_2_mbox_loc_flat"
|
1520 |
+
type: "Flatten"
|
1521 |
+
bottom: "conv15_2_mbox_loc_perm"
|
1522 |
+
top: "conv15_2_mbox_loc_flat"
|
1523 |
+
flatten_param {
|
1524 |
+
axis: 1
|
1525 |
+
}
|
1526 |
+
}
|
1527 |
+
layer {
|
1528 |
+
name: "conv15_2_mbox_conf"
|
1529 |
+
type: "Convolution"
|
1530 |
+
bottom: "conv15_2"
|
1531 |
+
top: "conv15_2_mbox_conf"
|
1532 |
+
param {
|
1533 |
+
lr_mult: 1.0
|
1534 |
+
decay_mult: 1.0
|
1535 |
+
}
|
1536 |
+
param {
|
1537 |
+
lr_mult: 2.0
|
1538 |
+
decay_mult: 0.0
|
1539 |
+
}
|
1540 |
+
convolution_param {
|
1541 |
+
num_output: 126
|
1542 |
+
kernel_size: 1
|
1543 |
+
weight_filler {
|
1544 |
+
type: "msra"
|
1545 |
+
}
|
1546 |
+
bias_filler {
|
1547 |
+
type: "constant"
|
1548 |
+
value: 0.0
|
1549 |
+
}
|
1550 |
+
}
|
1551 |
+
}
|
1552 |
+
layer {
|
1553 |
+
name: "conv15_2_mbox_conf_perm"
|
1554 |
+
type: "Permute"
|
1555 |
+
bottom: "conv15_2_mbox_conf"
|
1556 |
+
top: "conv15_2_mbox_conf_perm"
|
1557 |
+
permute_param {
|
1558 |
+
order: 0
|
1559 |
+
order: 2
|
1560 |
+
order: 3
|
1561 |
+
order: 1
|
1562 |
+
}
|
1563 |
+
}
|
1564 |
+
layer {
|
1565 |
+
name: "conv15_2_mbox_conf_flat"
|
1566 |
+
type: "Flatten"
|
1567 |
+
bottom: "conv15_2_mbox_conf_perm"
|
1568 |
+
top: "conv15_2_mbox_conf_flat"
|
1569 |
+
flatten_param {
|
1570 |
+
axis: 1
|
1571 |
+
}
|
1572 |
+
}
|
1573 |
+
layer {
|
1574 |
+
name: "conv15_2_mbox_priorbox"
|
1575 |
+
type: "PriorBox"
|
1576 |
+
bottom: "conv15_2"
|
1577 |
+
bottom: "data"
|
1578 |
+
top: "conv15_2_mbox_priorbox"
|
1579 |
+
prior_box_param {
|
1580 |
+
min_size: 195.0
|
1581 |
+
max_size: 240.0
|
1582 |
+
aspect_ratio: 2.0
|
1583 |
+
aspect_ratio: 3.0
|
1584 |
+
flip: true
|
1585 |
+
clip: false
|
1586 |
+
variance: 0.1
|
1587 |
+
variance: 0.1
|
1588 |
+
variance: 0.2
|
1589 |
+
variance: 0.2
|
1590 |
+
offset: 0.5
|
1591 |
+
}
|
1592 |
+
}
|
1593 |
+
layer {
|
1594 |
+
name: "conv16_2_mbox_loc"
|
1595 |
+
type: "Convolution"
|
1596 |
+
bottom: "conv16_2"
|
1597 |
+
top: "conv16_2_mbox_loc"
|
1598 |
+
param {
|
1599 |
+
lr_mult: 1.0
|
1600 |
+
decay_mult: 1.0
|
1601 |
+
}
|
1602 |
+
param {
|
1603 |
+
lr_mult: 2.0
|
1604 |
+
decay_mult: 0.0
|
1605 |
+
}
|
1606 |
+
convolution_param {
|
1607 |
+
num_output: 24
|
1608 |
+
kernel_size: 1
|
1609 |
+
weight_filler {
|
1610 |
+
type: "msra"
|
1611 |
+
}
|
1612 |
+
bias_filler {
|
1613 |
+
type: "constant"
|
1614 |
+
value: 0.0
|
1615 |
+
}
|
1616 |
+
}
|
1617 |
+
}
|
1618 |
+
layer {
|
1619 |
+
name: "conv16_2_mbox_loc_perm"
|
1620 |
+
type: "Permute"
|
1621 |
+
bottom: "conv16_2_mbox_loc"
|
1622 |
+
top: "conv16_2_mbox_loc_perm"
|
1623 |
+
permute_param {
|
1624 |
+
order: 0
|
1625 |
+
order: 2
|
1626 |
+
order: 3
|
1627 |
+
order: 1
|
1628 |
+
}
|
1629 |
+
}
|
1630 |
+
layer {
|
1631 |
+
name: "conv16_2_mbox_loc_flat"
|
1632 |
+
type: "Flatten"
|
1633 |
+
bottom: "conv16_2_mbox_loc_perm"
|
1634 |
+
top: "conv16_2_mbox_loc_flat"
|
1635 |
+
flatten_param {
|
1636 |
+
axis: 1
|
1637 |
+
}
|
1638 |
+
}
|
1639 |
+
layer {
|
1640 |
+
name: "conv16_2_mbox_conf"
|
1641 |
+
type: "Convolution"
|
1642 |
+
bottom: "conv16_2"
|
1643 |
+
top: "conv16_2_mbox_conf"
|
1644 |
+
param {
|
1645 |
+
lr_mult: 1.0
|
1646 |
+
decay_mult: 1.0
|
1647 |
+
}
|
1648 |
+
param {
|
1649 |
+
lr_mult: 2.0
|
1650 |
+
decay_mult: 0.0
|
1651 |
+
}
|
1652 |
+
convolution_param {
|
1653 |
+
num_output: 126
|
1654 |
+
kernel_size: 1
|
1655 |
+
weight_filler {
|
1656 |
+
type: "msra"
|
1657 |
+
}
|
1658 |
+
bias_filler {
|
1659 |
+
type: "constant"
|
1660 |
+
value: 0.0
|
1661 |
+
}
|
1662 |
+
}
|
1663 |
+
}
|
1664 |
+
layer {
|
1665 |
+
name: "conv16_2_mbox_conf_perm"
|
1666 |
+
type: "Permute"
|
1667 |
+
bottom: "conv16_2_mbox_conf"
|
1668 |
+
top: "conv16_2_mbox_conf_perm"
|
1669 |
+
permute_param {
|
1670 |
+
order: 0
|
1671 |
+
order: 2
|
1672 |
+
order: 3
|
1673 |
+
order: 1
|
1674 |
+
}
|
1675 |
+
}
|
1676 |
+
layer {
|
1677 |
+
name: "conv16_2_mbox_conf_flat"
|
1678 |
+
type: "Flatten"
|
1679 |
+
bottom: "conv16_2_mbox_conf_perm"
|
1680 |
+
top: "conv16_2_mbox_conf_flat"
|
1681 |
+
flatten_param {
|
1682 |
+
axis: 1
|
1683 |
+
}
|
1684 |
+
}
|
1685 |
+
layer {
|
1686 |
+
name: "conv16_2_mbox_priorbox"
|
1687 |
+
type: "PriorBox"
|
1688 |
+
bottom: "conv16_2"
|
1689 |
+
bottom: "data"
|
1690 |
+
top: "conv16_2_mbox_priorbox"
|
1691 |
+
prior_box_param {
|
1692 |
+
min_size: 240.0
|
1693 |
+
max_size: 285.0
|
1694 |
+
aspect_ratio: 2.0
|
1695 |
+
aspect_ratio: 3.0
|
1696 |
+
flip: true
|
1697 |
+
clip: false
|
1698 |
+
variance: 0.1
|
1699 |
+
variance: 0.1
|
1700 |
+
variance: 0.2
|
1701 |
+
variance: 0.2
|
1702 |
+
offset: 0.5
|
1703 |
+
}
|
1704 |
+
}
|
1705 |
+
layer {
|
1706 |
+
name: "conv17_2_mbox_loc"
|
1707 |
+
type: "Convolution"
|
1708 |
+
bottom: "conv17_2"
|
1709 |
+
top: "conv17_2_mbox_loc"
|
1710 |
+
param {
|
1711 |
+
lr_mult: 1.0
|
1712 |
+
decay_mult: 1.0
|
1713 |
+
}
|
1714 |
+
param {
|
1715 |
+
lr_mult: 2.0
|
1716 |
+
decay_mult: 0.0
|
1717 |
+
}
|
1718 |
+
convolution_param {
|
1719 |
+
num_output: 24
|
1720 |
+
kernel_size: 1
|
1721 |
+
weight_filler {
|
1722 |
+
type: "msra"
|
1723 |
+
}
|
1724 |
+
bias_filler {
|
1725 |
+
type: "constant"
|
1726 |
+
value: 0.0
|
1727 |
+
}
|
1728 |
+
}
|
1729 |
+
}
|
1730 |
+
layer {
|
1731 |
+
name: "conv17_2_mbox_loc_perm"
|
1732 |
+
type: "Permute"
|
1733 |
+
bottom: "conv17_2_mbox_loc"
|
1734 |
+
top: "conv17_2_mbox_loc_perm"
|
1735 |
+
permute_param {
|
1736 |
+
order: 0
|
1737 |
+
order: 2
|
1738 |
+
order: 3
|
1739 |
+
order: 1
|
1740 |
+
}
|
1741 |
+
}
|
1742 |
+
layer {
|
1743 |
+
name: "conv17_2_mbox_loc_flat"
|
1744 |
+
type: "Flatten"
|
1745 |
+
bottom: "conv17_2_mbox_loc_perm"
|
1746 |
+
top: "conv17_2_mbox_loc_flat"
|
1747 |
+
flatten_param {
|
1748 |
+
axis: 1
|
1749 |
+
}
|
1750 |
+
}
|
1751 |
+
layer {
|
1752 |
+
name: "conv17_2_mbox_conf"
|
1753 |
+
type: "Convolution"
|
1754 |
+
bottom: "conv17_2"
|
1755 |
+
top: "conv17_2_mbox_conf"
|
1756 |
+
param {
|
1757 |
+
lr_mult: 1.0
|
1758 |
+
decay_mult: 1.0
|
1759 |
+
}
|
1760 |
+
param {
|
1761 |
+
lr_mult: 2.0
|
1762 |
+
decay_mult: 0.0
|
1763 |
+
}
|
1764 |
+
convolution_param {
|
1765 |
+
num_output: 126
|
1766 |
+
kernel_size: 1
|
1767 |
+
weight_filler {
|
1768 |
+
type: "msra"
|
1769 |
+
}
|
1770 |
+
bias_filler {
|
1771 |
+
type: "constant"
|
1772 |
+
value: 0.0
|
1773 |
+
}
|
1774 |
+
}
|
1775 |
+
}
|
1776 |
+
layer {
|
1777 |
+
name: "conv17_2_mbox_conf_perm"
|
1778 |
+
type: "Permute"
|
1779 |
+
bottom: "conv17_2_mbox_conf"
|
1780 |
+
top: "conv17_2_mbox_conf_perm"
|
1781 |
+
permute_param {
|
1782 |
+
order: 0
|
1783 |
+
order: 2
|
1784 |
+
order: 3
|
1785 |
+
order: 1
|
1786 |
+
}
|
1787 |
+
}
|
1788 |
+
layer {
|
1789 |
+
name: "conv17_2_mbox_conf_flat"
|
1790 |
+
type: "Flatten"
|
1791 |
+
bottom: "conv17_2_mbox_conf_perm"
|
1792 |
+
top: "conv17_2_mbox_conf_flat"
|
1793 |
+
flatten_param {
|
1794 |
+
axis: 1
|
1795 |
+
}
|
1796 |
+
}
|
1797 |
+
layer {
|
1798 |
+
name: "conv17_2_mbox_priorbox"
|
1799 |
+
type: "PriorBox"
|
1800 |
+
bottom: "conv17_2"
|
1801 |
+
bottom: "data"
|
1802 |
+
top: "conv17_2_mbox_priorbox"
|
1803 |
+
prior_box_param {
|
1804 |
+
min_size: 285.0
|
1805 |
+
max_size: 300.0
|
1806 |
+
aspect_ratio: 2.0
|
1807 |
+
aspect_ratio: 3.0
|
1808 |
+
flip: true
|
1809 |
+
clip: false
|
1810 |
+
variance: 0.1
|
1811 |
+
variance: 0.1
|
1812 |
+
variance: 0.2
|
1813 |
+
variance: 0.2
|
1814 |
+
offset: 0.5
|
1815 |
+
}
|
1816 |
+
}
|
1817 |
+
layer {
|
1818 |
+
name: "mbox_loc"
|
1819 |
+
type: "Concat"
|
1820 |
+
bottom: "conv11_mbox_loc_flat"
|
1821 |
+
bottom: "conv13_mbox_loc_flat"
|
1822 |
+
bottom: "conv14_2_mbox_loc_flat"
|
1823 |
+
bottom: "conv15_2_mbox_loc_flat"
|
1824 |
+
bottom: "conv16_2_mbox_loc_flat"
|
1825 |
+
bottom: "conv17_2_mbox_loc_flat"
|
1826 |
+
top: "mbox_loc"
|
1827 |
+
concat_param {
|
1828 |
+
axis: 1
|
1829 |
+
}
|
1830 |
+
}
|
1831 |
+
layer {
|
1832 |
+
name: "mbox_conf"
|
1833 |
+
type: "Concat"
|
1834 |
+
bottom: "conv11_mbox_conf_flat"
|
1835 |
+
bottom: "conv13_mbox_conf_flat"
|
1836 |
+
bottom: "conv14_2_mbox_conf_flat"
|
1837 |
+
bottom: "conv15_2_mbox_conf_flat"
|
1838 |
+
bottom: "conv16_2_mbox_conf_flat"
|
1839 |
+
bottom: "conv17_2_mbox_conf_flat"
|
1840 |
+
top: "mbox_conf"
|
1841 |
+
concat_param {
|
1842 |
+
axis: 1
|
1843 |
+
}
|
1844 |
+
}
|
1845 |
+
layer {
|
1846 |
+
name: "mbox_priorbox"
|
1847 |
+
type: "Concat"
|
1848 |
+
bottom: "conv11_mbox_priorbox"
|
1849 |
+
bottom: "conv13_mbox_priorbox"
|
1850 |
+
bottom: "conv14_2_mbox_priorbox"
|
1851 |
+
bottom: "conv15_2_mbox_priorbox"
|
1852 |
+
bottom: "conv16_2_mbox_priorbox"
|
1853 |
+
bottom: "conv17_2_mbox_priorbox"
|
1854 |
+
top: "mbox_priorbox"
|
1855 |
+
concat_param {
|
1856 |
+
axis: 2
|
1857 |
+
}
|
1858 |
+
}
|
1859 |
+
layer {
|
1860 |
+
name: "mbox_conf_reshape"
|
1861 |
+
type: "Reshape"
|
1862 |
+
bottom: "mbox_conf"
|
1863 |
+
top: "mbox_conf_reshape"
|
1864 |
+
reshape_param {
|
1865 |
+
shape {
|
1866 |
+
dim: 0
|
1867 |
+
dim: -1
|
1868 |
+
dim: 21
|
1869 |
+
}
|
1870 |
+
}
|
1871 |
+
}
|
1872 |
+
layer {
|
1873 |
+
name: "mbox_conf_softmax"
|
1874 |
+
type: "Softmax"
|
1875 |
+
bottom: "mbox_conf_reshape"
|
1876 |
+
top: "mbox_conf_softmax"
|
1877 |
+
softmax_param {
|
1878 |
+
axis: 2
|
1879 |
+
}
|
1880 |
+
}
|
1881 |
+
layer {
|
1882 |
+
name: "mbox_conf_flatten"
|
1883 |
+
type: "Flatten"
|
1884 |
+
bottom: "mbox_conf_softmax"
|
1885 |
+
top: "mbox_conf_flatten"
|
1886 |
+
flatten_param {
|
1887 |
+
axis: 1
|
1888 |
+
}
|
1889 |
+
}
|
1890 |
+
layer {
|
1891 |
+
name: "detection_out"
|
1892 |
+
type: "DetectionOutput"
|
1893 |
+
bottom: "mbox_loc"
|
1894 |
+
bottom: "mbox_conf_flatten"
|
1895 |
+
bottom: "mbox_priorbox"
|
1896 |
+
top: "detection_out"
|
1897 |
+
include {
|
1898 |
+
phase: TEST
|
1899 |
+
}
|
1900 |
+
detection_output_param {
|
1901 |
+
num_classes: 21
|
1902 |
+
share_location: true
|
1903 |
+
background_label_id: 0
|
1904 |
+
nms_param {
|
1905 |
+
nms_threshold: 0.45
|
1906 |
+
top_k: 100
|
1907 |
+
}
|
1908 |
+
code_type: CENTER_SIZE
|
1909 |
+
keep_top_k: 100
|
1910 |
+
confidence_threshold: 0.25
|
1911 |
+
}
|
1912 |
+
}
|
README.md
CHANGED
@@ -1,12 +1,45 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# AIComputerVision
|
2 |
+
This project contains various computer vision and AI related python scripts
|
3 |
+
|
4 |
+
Link to full playlist: https://www.youtube.com/watch?v=UM9oDhhAg88&list=PLWw98q-Xe7iH8UHARl8RGk8MRj1raY4Eh
|
5 |
+
|
6 |
+
Below is brief description for each script:
|
7 |
+
|
8 |
+
1. Cat Dog detection:
|
9 |
+
This script can detect cats and dogs in a frame. You can replace cat or dog with any other object you want to detect.
|
10 |
+
|
11 |
+
2. Centroidtracker:
|
12 |
+
This script helps in tracking any object in a frame. We have used this in person_tracking.py script in order to track persons in the frame.
|
13 |
+
|
14 |
+
3. Dwell Time Calculation:
|
15 |
+
This script calculates the time a person has spent in a frame. It is a good example of calculating total time a person was present in frame.
|
16 |
+
|
17 |
+
4. Face Detection:
|
18 |
+
This script detects face in person image or in a frame
|
19 |
+
|
20 |
+
5. FPS Example:
|
21 |
+
While inferencing on a video file or frame from live usb webcam, its always a good idea to keep a check on how much fps we are getting. This script shows approx fps on frame.
|
22 |
+
|
23 |
+
6. OpenCV Example:
|
24 |
+
This script shows basic usage of opencv
|
25 |
+
|
26 |
+
7. Person Detection in Image File:
|
27 |
+
This script detects person in image file
|
28 |
+
|
29 |
+
8. Person Detection in Video File:
|
30 |
+
This script detects person in video file. Test video file is present in video dir.
|
31 |
+
|
32 |
+
9. Person Tracking:
|
33 |
+
This script detects person and keeps tracking them in the frame. It assigns a unique ID to each detected person.
|
34 |
+
|
35 |
+
10. Monitor Social Distance
|
36 |
+
This script monitors social distance between the persons. If it is less than a threshold value, we display bounding box in red otherwise green.
|
37 |
+
|
38 |
+
11. Drawing tracking line:
|
39 |
+
This script draws a line denoting where the person has entered in the frame and where he has moved in the frame.
|
40 |
+
|
41 |
+
12. Face Mask Detection:
|
42 |
+
This script checks if a person is wearing face mask or not
|
43 |
+
|
44 |
+
13. Person Counter:
|
45 |
+
This script counts the number of person present in the frame.
|
__pycache__/centroidtracker.cpython-310.pyc
ADDED
Binary file (2.41 kB). View file
|
|
app.py
CHANGED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
st.set_page_config(
|
4 |
+
page_title = "Cheating Detection Application")
|
5 |
+
|
6 |
+
st.title("Cheating Application Final Year Project")
|
7 |
+
|
8 |
+
st.sidebar.success("Select a page above")
|
9 |
+
|
10 |
+
|
11 |
+
st.image("logo.jpeg")
|
12 |
+
|
13 |
+
st.write("""
|
14 |
+
Imran Ahmed (GL)
|
15 |
+
SE-093-2019
|
16 |
+
|
17 |
+
Mir Taimoor Iqbal
|
18 |
+
SE-075-2019
|
19 |
+
|
20 |
+
Muhammad Ali Akbar
|
21 |
+
SE-019-2018
|
22 |
+
|
23 |
+
FABEHA QADIR
|
24 |
+
SE-076-2019""")
|
cat_dog_detection.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import imutils
|
4 |
+
|
5 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
6 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
7 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
8 |
+
|
9 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
10 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
11 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
12 |
+
"sofa", "train", "tvmonitor"]
|
13 |
+
|
14 |
+
|
15 |
+
def main():
|
16 |
+
image = cv2.imread('dog.jpg')
|
17 |
+
image = imutils.resize(image, width=600)
|
18 |
+
|
19 |
+
(H, W) = image.shape[:2]
|
20 |
+
|
21 |
+
blob = cv2.dnn.blobFromImage(image, 0.007843, (W, H), 127.5)
|
22 |
+
|
23 |
+
detector.setInput(blob)
|
24 |
+
person_detections = detector.forward()
|
25 |
+
|
26 |
+
for i in np.arange(0, person_detections.shape[2]):
|
27 |
+
confidence = person_detections[0, 0, i, 2]
|
28 |
+
if confidence > 0.5:
|
29 |
+
idx = int(person_detections[0, 0, i, 1])
|
30 |
+
|
31 |
+
if CLASSES[idx] != "dog":
|
32 |
+
continue
|
33 |
+
|
34 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
35 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
36 |
+
|
37 |
+
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)
|
38 |
+
|
39 |
+
cv2.imshow("Results", image)
|
40 |
+
cv2.waitKey(0)
|
41 |
+
cv2.destroyAllWindows()
|
42 |
+
|
43 |
+
main()
|
centroidtracker.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import the necessary packages
|
2 |
+
from scipy.spatial import distance as dist
|
3 |
+
from collections import OrderedDict
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
class CentroidTracker:
|
8 |
+
def __init__(self, maxDisappeared=50, maxDistance=50):
|
9 |
+
# initialize the next unique object ID along with two ordered
|
10 |
+
# dictionaries used to keep track of mapping a given object
|
11 |
+
# ID to its centroid and number of consecutive frames it has
|
12 |
+
# been marked as "disappeared", respectively
|
13 |
+
self.nextObjectID = 0
|
14 |
+
self.objects = OrderedDict()
|
15 |
+
self.disappeared = OrderedDict()
|
16 |
+
self.bbox = OrderedDict() # CHANGE
|
17 |
+
|
18 |
+
# store the number of maximum consecutive frames a given
|
19 |
+
# object is allowed to be marked as "disappeared" until we
|
20 |
+
# need to deregister the object from tracking
|
21 |
+
self.maxDisappeared = maxDisappeared
|
22 |
+
|
23 |
+
# store the maximum distance between centroids to associate
|
24 |
+
# an object -- if the distance is larger than this maximum
|
25 |
+
# distance we'll start to mark the object as "disappeared"
|
26 |
+
self.maxDistance = maxDistance
|
27 |
+
|
28 |
+
def register(self, centroid, inputRect):
|
29 |
+
# when registering an object we use the next available object
|
30 |
+
# ID to store the centroid
|
31 |
+
self.objects[self.nextObjectID] = centroid
|
32 |
+
self.bbox[self.nextObjectID] = inputRect # CHANGE
|
33 |
+
self.disappeared[self.nextObjectID] = 0
|
34 |
+
self.nextObjectID += 1
|
35 |
+
|
36 |
+
def deregister(self, objectID):
|
37 |
+
# to deregister an object ID we delete the object ID from
|
38 |
+
# both of our respective dictionaries
|
39 |
+
del self.objects[objectID]
|
40 |
+
del self.disappeared[objectID]
|
41 |
+
del self.bbox[objectID] # CHANGE
|
42 |
+
|
43 |
+
def update(self, rects):
|
44 |
+
# check to see if the list of input bounding box rectangles
|
45 |
+
# is empty
|
46 |
+
if len(rects) == 0:
|
47 |
+
# loop over any existing tracked objects and mark them
|
48 |
+
# as disappeared
|
49 |
+
for objectID in list(self.disappeared.keys()):
|
50 |
+
self.disappeared[objectID] += 1
|
51 |
+
|
52 |
+
# if we have reached a maximum number of consecutive
|
53 |
+
# frames where a given object has been marked as
|
54 |
+
# missing, deregister it
|
55 |
+
if self.disappeared[objectID] > self.maxDisappeared:
|
56 |
+
self.deregister(objectID)
|
57 |
+
|
58 |
+
# return early as there are no centroids or tracking info
|
59 |
+
# to update
|
60 |
+
# return self.objects
|
61 |
+
return self.bbox
|
62 |
+
|
63 |
+
# initialize an array of input centroids for the current frame
|
64 |
+
inputCentroids = np.zeros((len(rects), 2), dtype="int")
|
65 |
+
inputRects = []
|
66 |
+
# loop over the bounding box rectangles
|
67 |
+
for (i, (startX, startY, endX, endY)) in enumerate(rects):
|
68 |
+
# use the bounding box coordinates to derive the centroid
|
69 |
+
cX = int((startX + endX) / 2.0)
|
70 |
+
cY = int((startY + endY) / 2.0)
|
71 |
+
inputCentroids[i] = (cX, cY)
|
72 |
+
inputRects.append(rects[i]) # CHANGE
|
73 |
+
|
74 |
+
# if we are currently not tracking any objects take the input
|
75 |
+
# centroids and register each of them
|
76 |
+
if len(self.objects) == 0:
|
77 |
+
for i in range(0, len(inputCentroids)):
|
78 |
+
self.register(inputCentroids[i], inputRects[i]) # CHANGE
|
79 |
+
|
80 |
+
# otherwise, are are currently tracking objects so we need to
|
81 |
+
# try to match the input centroids to existing object
|
82 |
+
# centroids
|
83 |
+
else:
|
84 |
+
# grab the set of object IDs and corresponding centroids
|
85 |
+
objectIDs = list(self.objects.keys())
|
86 |
+
objectCentroids = list(self.objects.values())
|
87 |
+
|
88 |
+
# compute the distance between each pair of object
|
89 |
+
# centroids and input centroids, respectively -- our
|
90 |
+
# goal will be to match an input centroid to an existing
|
91 |
+
# object centroid
|
92 |
+
D = dist.cdist(np.array(objectCentroids), inputCentroids)
|
93 |
+
|
94 |
+
# in order to perform this matching we must (1) find the
|
95 |
+
# smallest value in each row and then (2) sort the row
|
96 |
+
# indexes based on their minimum values so that the row
|
97 |
+
# with the smallest value as at the *front* of the index
|
98 |
+
# list
|
99 |
+
rows = D.min(axis=1).argsort()
|
100 |
+
|
101 |
+
# next, we perform a similar process on the columns by
|
102 |
+
# finding the smallest value in each column and then
|
103 |
+
# sorting using the previously computed row index list
|
104 |
+
cols = D.argmin(axis=1)[rows]
|
105 |
+
|
106 |
+
# in order to determine if we need to update, register,
|
107 |
+
# or deregister an object we need to keep track of which
|
108 |
+
# of the rows and column indexes we have already examined
|
109 |
+
usedRows = set()
|
110 |
+
usedCols = set()
|
111 |
+
|
112 |
+
# loop over the combination of the (row, column) index
|
113 |
+
# tuples
|
114 |
+
for (row, col) in zip(rows, cols):
|
115 |
+
# if we have already examined either the row or
|
116 |
+
# column value before, ignore it
|
117 |
+
if row in usedRows or col in usedCols:
|
118 |
+
continue
|
119 |
+
|
120 |
+
# if the distance between centroids is greater than
|
121 |
+
# the maximum distance, do not associate the two
|
122 |
+
# centroids to the same object
|
123 |
+
if D[row, col] > self.maxDistance:
|
124 |
+
continue
|
125 |
+
|
126 |
+
# otherwise, grab the object ID for the current row,
|
127 |
+
# set its new centroid, and reset the disappeared
|
128 |
+
# counter
|
129 |
+
objectID = objectIDs[row]
|
130 |
+
self.objects[objectID] = inputCentroids[col]
|
131 |
+
self.bbox[objectID] = inputRects[col] # CHANGE
|
132 |
+
self.disappeared[objectID] = 0
|
133 |
+
|
134 |
+
# indicate that we have examined each of the row and
|
135 |
+
# column indexes, respectively
|
136 |
+
usedRows.add(row)
|
137 |
+
usedCols.add(col)
|
138 |
+
|
139 |
+
# compute both the row and column index we have NOT yet
|
140 |
+
# examined
|
141 |
+
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
142 |
+
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
143 |
+
|
144 |
+
# in the event that the number of object centroids is
|
145 |
+
# equal or greater than the number of input centroids
|
146 |
+
# we need to check and see if some of these objects have
|
147 |
+
# potentially disappeared
|
148 |
+
if D.shape[0] >= D.shape[1]:
|
149 |
+
# loop over the unused row indexes
|
150 |
+
for row in unusedRows:
|
151 |
+
# grab the object ID for the corresponding row
|
152 |
+
# index and increment the disappeared counter
|
153 |
+
objectID = objectIDs[row]
|
154 |
+
self.disappeared[objectID] += 1
|
155 |
+
|
156 |
+
# check to see if the number of consecutive
|
157 |
+
# frames the object has been marked "disappeared"
|
158 |
+
# for warrants deregistering the object
|
159 |
+
if self.disappeared[objectID] > self.maxDisappeared:
|
160 |
+
self.deregister(objectID)
|
161 |
+
|
162 |
+
# otherwise, if the number of input centroids is greater
|
163 |
+
# than the number of existing object centroids we need to
|
164 |
+
# register each new input centroid as a trackable object
|
165 |
+
else:
|
166 |
+
for col in unusedCols:
|
167 |
+
self.register(inputCentroids[col], inputRects[col])
|
168 |
+
|
169 |
+
# return the set of trackable objects
|
170 |
+
# return self.objects
|
171 |
+
return self.bbox
|
172 |
+
|
data.db
ADDED
Binary file (8.19 kB). View file
|
|
deploy.prototxt
ADDED
@@ -0,0 +1,1789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input: "data"
|
2 |
+
input_shape {
|
3 |
+
dim: 1
|
4 |
+
dim: 3
|
5 |
+
dim: 300
|
6 |
+
dim: 300
|
7 |
+
}
|
8 |
+
|
9 |
+
layer {
|
10 |
+
name: "data_bn"
|
11 |
+
type: "BatchNorm"
|
12 |
+
bottom: "data"
|
13 |
+
top: "data_bn"
|
14 |
+
param {
|
15 |
+
lr_mult: 0.0
|
16 |
+
}
|
17 |
+
param {
|
18 |
+
lr_mult: 0.0
|
19 |
+
}
|
20 |
+
param {
|
21 |
+
lr_mult: 0.0
|
22 |
+
}
|
23 |
+
}
|
24 |
+
layer {
|
25 |
+
name: "data_scale"
|
26 |
+
type: "Scale"
|
27 |
+
bottom: "data_bn"
|
28 |
+
top: "data_bn"
|
29 |
+
param {
|
30 |
+
lr_mult: 1.0
|
31 |
+
decay_mult: 1.0
|
32 |
+
}
|
33 |
+
param {
|
34 |
+
lr_mult: 2.0
|
35 |
+
decay_mult: 1.0
|
36 |
+
}
|
37 |
+
scale_param {
|
38 |
+
bias_term: true
|
39 |
+
}
|
40 |
+
}
|
41 |
+
layer {
|
42 |
+
name: "conv1_h"
|
43 |
+
type: "Convolution"
|
44 |
+
bottom: "data_bn"
|
45 |
+
top: "conv1_h"
|
46 |
+
param {
|
47 |
+
lr_mult: 1.0
|
48 |
+
decay_mult: 1.0
|
49 |
+
}
|
50 |
+
param {
|
51 |
+
lr_mult: 2.0
|
52 |
+
decay_mult: 1.0
|
53 |
+
}
|
54 |
+
convolution_param {
|
55 |
+
num_output: 32
|
56 |
+
pad: 3
|
57 |
+
kernel_size: 7
|
58 |
+
stride: 2
|
59 |
+
weight_filler {
|
60 |
+
type: "msra"
|
61 |
+
variance_norm: FAN_OUT
|
62 |
+
}
|
63 |
+
bias_filler {
|
64 |
+
type: "constant"
|
65 |
+
value: 0.0
|
66 |
+
}
|
67 |
+
}
|
68 |
+
}
|
69 |
+
layer {
|
70 |
+
name: "conv1_bn_h"
|
71 |
+
type: "BatchNorm"
|
72 |
+
bottom: "conv1_h"
|
73 |
+
top: "conv1_h"
|
74 |
+
param {
|
75 |
+
lr_mult: 0.0
|
76 |
+
}
|
77 |
+
param {
|
78 |
+
lr_mult: 0.0
|
79 |
+
}
|
80 |
+
param {
|
81 |
+
lr_mult: 0.0
|
82 |
+
}
|
83 |
+
}
|
84 |
+
layer {
|
85 |
+
name: "conv1_scale_h"
|
86 |
+
type: "Scale"
|
87 |
+
bottom: "conv1_h"
|
88 |
+
top: "conv1_h"
|
89 |
+
param {
|
90 |
+
lr_mult: 1.0
|
91 |
+
decay_mult: 1.0
|
92 |
+
}
|
93 |
+
param {
|
94 |
+
lr_mult: 2.0
|
95 |
+
decay_mult: 1.0
|
96 |
+
}
|
97 |
+
scale_param {
|
98 |
+
bias_term: true
|
99 |
+
}
|
100 |
+
}
|
101 |
+
layer {
|
102 |
+
name: "conv1_relu"
|
103 |
+
type: "ReLU"
|
104 |
+
bottom: "conv1_h"
|
105 |
+
top: "conv1_h"
|
106 |
+
}
|
107 |
+
layer {
|
108 |
+
name: "conv1_pool"
|
109 |
+
type: "Pooling"
|
110 |
+
bottom: "conv1_h"
|
111 |
+
top: "conv1_pool"
|
112 |
+
pooling_param {
|
113 |
+
kernel_size: 3
|
114 |
+
stride: 2
|
115 |
+
}
|
116 |
+
}
|
117 |
+
layer {
|
118 |
+
name: "layer_64_1_conv1_h"
|
119 |
+
type: "Convolution"
|
120 |
+
bottom: "conv1_pool"
|
121 |
+
top: "layer_64_1_conv1_h"
|
122 |
+
param {
|
123 |
+
lr_mult: 1.0
|
124 |
+
decay_mult: 1.0
|
125 |
+
}
|
126 |
+
convolution_param {
|
127 |
+
num_output: 32
|
128 |
+
bias_term: false
|
129 |
+
pad: 1
|
130 |
+
kernel_size: 3
|
131 |
+
stride: 1
|
132 |
+
weight_filler {
|
133 |
+
type: "msra"
|
134 |
+
}
|
135 |
+
bias_filler {
|
136 |
+
type: "constant"
|
137 |
+
value: 0.0
|
138 |
+
}
|
139 |
+
}
|
140 |
+
}
|
141 |
+
layer {
|
142 |
+
name: "layer_64_1_bn2_h"
|
143 |
+
type: "BatchNorm"
|
144 |
+
bottom: "layer_64_1_conv1_h"
|
145 |
+
top: "layer_64_1_conv1_h"
|
146 |
+
param {
|
147 |
+
lr_mult: 0.0
|
148 |
+
}
|
149 |
+
param {
|
150 |
+
lr_mult: 0.0
|
151 |
+
}
|
152 |
+
param {
|
153 |
+
lr_mult: 0.0
|
154 |
+
}
|
155 |
+
}
|
156 |
+
layer {
|
157 |
+
name: "layer_64_1_scale2_h"
|
158 |
+
type: "Scale"
|
159 |
+
bottom: "layer_64_1_conv1_h"
|
160 |
+
top: "layer_64_1_conv1_h"
|
161 |
+
param {
|
162 |
+
lr_mult: 1.0
|
163 |
+
decay_mult: 1.0
|
164 |
+
}
|
165 |
+
param {
|
166 |
+
lr_mult: 2.0
|
167 |
+
decay_mult: 1.0
|
168 |
+
}
|
169 |
+
scale_param {
|
170 |
+
bias_term: true
|
171 |
+
}
|
172 |
+
}
|
173 |
+
layer {
|
174 |
+
name: "layer_64_1_relu2"
|
175 |
+
type: "ReLU"
|
176 |
+
bottom: "layer_64_1_conv1_h"
|
177 |
+
top: "layer_64_1_conv1_h"
|
178 |
+
}
|
179 |
+
layer {
|
180 |
+
name: "layer_64_1_conv2_h"
|
181 |
+
type: "Convolution"
|
182 |
+
bottom: "layer_64_1_conv1_h"
|
183 |
+
top: "layer_64_1_conv2_h"
|
184 |
+
param {
|
185 |
+
lr_mult: 1.0
|
186 |
+
decay_mult: 1.0
|
187 |
+
}
|
188 |
+
convolution_param {
|
189 |
+
num_output: 32
|
190 |
+
bias_term: false
|
191 |
+
pad: 1
|
192 |
+
kernel_size: 3
|
193 |
+
stride: 1
|
194 |
+
weight_filler {
|
195 |
+
type: "msra"
|
196 |
+
}
|
197 |
+
bias_filler {
|
198 |
+
type: "constant"
|
199 |
+
value: 0.0
|
200 |
+
}
|
201 |
+
}
|
202 |
+
}
|
203 |
+
layer {
|
204 |
+
name: "layer_64_1_sum"
|
205 |
+
type: "Eltwise"
|
206 |
+
bottom: "layer_64_1_conv2_h"
|
207 |
+
bottom: "conv1_pool"
|
208 |
+
top: "layer_64_1_sum"
|
209 |
+
}
|
210 |
+
layer {
|
211 |
+
name: "layer_128_1_bn1_h"
|
212 |
+
type: "BatchNorm"
|
213 |
+
bottom: "layer_64_1_sum"
|
214 |
+
top: "layer_128_1_bn1_h"
|
215 |
+
param {
|
216 |
+
lr_mult: 0.0
|
217 |
+
}
|
218 |
+
param {
|
219 |
+
lr_mult: 0.0
|
220 |
+
}
|
221 |
+
param {
|
222 |
+
lr_mult: 0.0
|
223 |
+
}
|
224 |
+
}
|
225 |
+
layer {
|
226 |
+
name: "layer_128_1_scale1_h"
|
227 |
+
type: "Scale"
|
228 |
+
bottom: "layer_128_1_bn1_h"
|
229 |
+
top: "layer_128_1_bn1_h"
|
230 |
+
param {
|
231 |
+
lr_mult: 1.0
|
232 |
+
decay_mult: 1.0
|
233 |
+
}
|
234 |
+
param {
|
235 |
+
lr_mult: 2.0
|
236 |
+
decay_mult: 1.0
|
237 |
+
}
|
238 |
+
scale_param {
|
239 |
+
bias_term: true
|
240 |
+
}
|
241 |
+
}
|
242 |
+
layer {
|
243 |
+
name: "layer_128_1_relu1"
|
244 |
+
type: "ReLU"
|
245 |
+
bottom: "layer_128_1_bn1_h"
|
246 |
+
top: "layer_128_1_bn1_h"
|
247 |
+
}
|
248 |
+
layer {
|
249 |
+
name: "layer_128_1_conv1_h"
|
250 |
+
type: "Convolution"
|
251 |
+
bottom: "layer_128_1_bn1_h"
|
252 |
+
top: "layer_128_1_conv1_h"
|
253 |
+
param {
|
254 |
+
lr_mult: 1.0
|
255 |
+
decay_mult: 1.0
|
256 |
+
}
|
257 |
+
convolution_param {
|
258 |
+
num_output: 128
|
259 |
+
bias_term: false
|
260 |
+
pad: 1
|
261 |
+
kernel_size: 3
|
262 |
+
stride: 2
|
263 |
+
weight_filler {
|
264 |
+
type: "msra"
|
265 |
+
}
|
266 |
+
bias_filler {
|
267 |
+
type: "constant"
|
268 |
+
value: 0.0
|
269 |
+
}
|
270 |
+
}
|
271 |
+
}
|
272 |
+
layer {
|
273 |
+
name: "layer_128_1_bn2"
|
274 |
+
type: "BatchNorm"
|
275 |
+
bottom: "layer_128_1_conv1_h"
|
276 |
+
top: "layer_128_1_conv1_h"
|
277 |
+
param {
|
278 |
+
lr_mult: 0.0
|
279 |
+
}
|
280 |
+
param {
|
281 |
+
lr_mult: 0.0
|
282 |
+
}
|
283 |
+
param {
|
284 |
+
lr_mult: 0.0
|
285 |
+
}
|
286 |
+
}
|
287 |
+
layer {
|
288 |
+
name: "layer_128_1_scale2"
|
289 |
+
type: "Scale"
|
290 |
+
bottom: "layer_128_1_conv1_h"
|
291 |
+
top: "layer_128_1_conv1_h"
|
292 |
+
param {
|
293 |
+
lr_mult: 1.0
|
294 |
+
decay_mult: 1.0
|
295 |
+
}
|
296 |
+
param {
|
297 |
+
lr_mult: 2.0
|
298 |
+
decay_mult: 1.0
|
299 |
+
}
|
300 |
+
scale_param {
|
301 |
+
bias_term: true
|
302 |
+
}
|
303 |
+
}
|
304 |
+
layer {
|
305 |
+
name: "layer_128_1_relu2"
|
306 |
+
type: "ReLU"
|
307 |
+
bottom: "layer_128_1_conv1_h"
|
308 |
+
top: "layer_128_1_conv1_h"
|
309 |
+
}
|
310 |
+
layer {
|
311 |
+
name: "layer_128_1_conv2"
|
312 |
+
type: "Convolution"
|
313 |
+
bottom: "layer_128_1_conv1_h"
|
314 |
+
top: "layer_128_1_conv2"
|
315 |
+
param {
|
316 |
+
lr_mult: 1.0
|
317 |
+
decay_mult: 1.0
|
318 |
+
}
|
319 |
+
convolution_param {
|
320 |
+
num_output: 128
|
321 |
+
bias_term: false
|
322 |
+
pad: 1
|
323 |
+
kernel_size: 3
|
324 |
+
stride: 1
|
325 |
+
weight_filler {
|
326 |
+
type: "msra"
|
327 |
+
}
|
328 |
+
bias_filler {
|
329 |
+
type: "constant"
|
330 |
+
value: 0.0
|
331 |
+
}
|
332 |
+
}
|
333 |
+
}
|
334 |
+
layer {
|
335 |
+
name: "layer_128_1_conv_expand_h"
|
336 |
+
type: "Convolution"
|
337 |
+
bottom: "layer_128_1_bn1_h"
|
338 |
+
top: "layer_128_1_conv_expand_h"
|
339 |
+
param {
|
340 |
+
lr_mult: 1.0
|
341 |
+
decay_mult: 1.0
|
342 |
+
}
|
343 |
+
convolution_param {
|
344 |
+
num_output: 128
|
345 |
+
bias_term: false
|
346 |
+
pad: 0
|
347 |
+
kernel_size: 1
|
348 |
+
stride: 2
|
349 |
+
weight_filler {
|
350 |
+
type: "msra"
|
351 |
+
}
|
352 |
+
bias_filler {
|
353 |
+
type: "constant"
|
354 |
+
value: 0.0
|
355 |
+
}
|
356 |
+
}
|
357 |
+
}
|
358 |
+
layer {
|
359 |
+
name: "layer_128_1_sum"
|
360 |
+
type: "Eltwise"
|
361 |
+
bottom: "layer_128_1_conv2"
|
362 |
+
bottom: "layer_128_1_conv_expand_h"
|
363 |
+
top: "layer_128_1_sum"
|
364 |
+
}
|
365 |
+
layer {
|
366 |
+
name: "layer_256_1_bn1"
|
367 |
+
type: "BatchNorm"
|
368 |
+
bottom: "layer_128_1_sum"
|
369 |
+
top: "layer_256_1_bn1"
|
370 |
+
param {
|
371 |
+
lr_mult: 0.0
|
372 |
+
}
|
373 |
+
param {
|
374 |
+
lr_mult: 0.0
|
375 |
+
}
|
376 |
+
param {
|
377 |
+
lr_mult: 0.0
|
378 |
+
}
|
379 |
+
}
|
380 |
+
layer {
|
381 |
+
name: "layer_256_1_scale1"
|
382 |
+
type: "Scale"
|
383 |
+
bottom: "layer_256_1_bn1"
|
384 |
+
top: "layer_256_1_bn1"
|
385 |
+
param {
|
386 |
+
lr_mult: 1.0
|
387 |
+
decay_mult: 1.0
|
388 |
+
}
|
389 |
+
param {
|
390 |
+
lr_mult: 2.0
|
391 |
+
decay_mult: 1.0
|
392 |
+
}
|
393 |
+
scale_param {
|
394 |
+
bias_term: true
|
395 |
+
}
|
396 |
+
}
|
397 |
+
layer {
|
398 |
+
name: "layer_256_1_relu1"
|
399 |
+
type: "ReLU"
|
400 |
+
bottom: "layer_256_1_bn1"
|
401 |
+
top: "layer_256_1_bn1"
|
402 |
+
}
|
403 |
+
layer {
|
404 |
+
name: "layer_256_1_conv1"
|
405 |
+
type: "Convolution"
|
406 |
+
bottom: "layer_256_1_bn1"
|
407 |
+
top: "layer_256_1_conv1"
|
408 |
+
param {
|
409 |
+
lr_mult: 1.0
|
410 |
+
decay_mult: 1.0
|
411 |
+
}
|
412 |
+
convolution_param {
|
413 |
+
num_output: 256
|
414 |
+
bias_term: false
|
415 |
+
pad: 1
|
416 |
+
kernel_size: 3
|
417 |
+
stride: 2
|
418 |
+
weight_filler {
|
419 |
+
type: "msra"
|
420 |
+
}
|
421 |
+
bias_filler {
|
422 |
+
type: "constant"
|
423 |
+
value: 0.0
|
424 |
+
}
|
425 |
+
}
|
426 |
+
}
|
427 |
+
layer {
|
428 |
+
name: "layer_256_1_bn2"
|
429 |
+
type: "BatchNorm"
|
430 |
+
bottom: "layer_256_1_conv1"
|
431 |
+
top: "layer_256_1_conv1"
|
432 |
+
param {
|
433 |
+
lr_mult: 0.0
|
434 |
+
}
|
435 |
+
param {
|
436 |
+
lr_mult: 0.0
|
437 |
+
}
|
438 |
+
param {
|
439 |
+
lr_mult: 0.0
|
440 |
+
}
|
441 |
+
}
|
442 |
+
layer {
|
443 |
+
name: "layer_256_1_scale2"
|
444 |
+
type: "Scale"
|
445 |
+
bottom: "layer_256_1_conv1"
|
446 |
+
top: "layer_256_1_conv1"
|
447 |
+
param {
|
448 |
+
lr_mult: 1.0
|
449 |
+
decay_mult: 1.0
|
450 |
+
}
|
451 |
+
param {
|
452 |
+
lr_mult: 2.0
|
453 |
+
decay_mult: 1.0
|
454 |
+
}
|
455 |
+
scale_param {
|
456 |
+
bias_term: true
|
457 |
+
}
|
458 |
+
}
|
459 |
+
layer {
|
460 |
+
name: "layer_256_1_relu2"
|
461 |
+
type: "ReLU"
|
462 |
+
bottom: "layer_256_1_conv1"
|
463 |
+
top: "layer_256_1_conv1"
|
464 |
+
}
|
465 |
+
layer {
|
466 |
+
name: "layer_256_1_conv2"
|
467 |
+
type: "Convolution"
|
468 |
+
bottom: "layer_256_1_conv1"
|
469 |
+
top: "layer_256_1_conv2"
|
470 |
+
param {
|
471 |
+
lr_mult: 1.0
|
472 |
+
decay_mult: 1.0
|
473 |
+
}
|
474 |
+
convolution_param {
|
475 |
+
num_output: 256
|
476 |
+
bias_term: false
|
477 |
+
pad: 1
|
478 |
+
kernel_size: 3
|
479 |
+
stride: 1
|
480 |
+
weight_filler {
|
481 |
+
type: "msra"
|
482 |
+
}
|
483 |
+
bias_filler {
|
484 |
+
type: "constant"
|
485 |
+
value: 0.0
|
486 |
+
}
|
487 |
+
}
|
488 |
+
}
|
489 |
+
layer {
|
490 |
+
name: "layer_256_1_conv_expand"
|
491 |
+
type: "Convolution"
|
492 |
+
bottom: "layer_256_1_bn1"
|
493 |
+
top: "layer_256_1_conv_expand"
|
494 |
+
param {
|
495 |
+
lr_mult: 1.0
|
496 |
+
decay_mult: 1.0
|
497 |
+
}
|
498 |
+
convolution_param {
|
499 |
+
num_output: 256
|
500 |
+
bias_term: false
|
501 |
+
pad: 0
|
502 |
+
kernel_size: 1
|
503 |
+
stride: 2
|
504 |
+
weight_filler {
|
505 |
+
type: "msra"
|
506 |
+
}
|
507 |
+
bias_filler {
|
508 |
+
type: "constant"
|
509 |
+
value: 0.0
|
510 |
+
}
|
511 |
+
}
|
512 |
+
}
|
513 |
+
layer {
|
514 |
+
name: "layer_256_1_sum"
|
515 |
+
type: "Eltwise"
|
516 |
+
bottom: "layer_256_1_conv2"
|
517 |
+
bottom: "layer_256_1_conv_expand"
|
518 |
+
top: "layer_256_1_sum"
|
519 |
+
}
|
520 |
+
layer {
|
521 |
+
name: "layer_512_1_bn1"
|
522 |
+
type: "BatchNorm"
|
523 |
+
bottom: "layer_256_1_sum"
|
524 |
+
top: "layer_512_1_bn1"
|
525 |
+
param {
|
526 |
+
lr_mult: 0.0
|
527 |
+
}
|
528 |
+
param {
|
529 |
+
lr_mult: 0.0
|
530 |
+
}
|
531 |
+
param {
|
532 |
+
lr_mult: 0.0
|
533 |
+
}
|
534 |
+
}
|
535 |
+
layer {
|
536 |
+
name: "layer_512_1_scale1"
|
537 |
+
type: "Scale"
|
538 |
+
bottom: "layer_512_1_bn1"
|
539 |
+
top: "layer_512_1_bn1"
|
540 |
+
param {
|
541 |
+
lr_mult: 1.0
|
542 |
+
decay_mult: 1.0
|
543 |
+
}
|
544 |
+
param {
|
545 |
+
lr_mult: 2.0
|
546 |
+
decay_mult: 1.0
|
547 |
+
}
|
548 |
+
scale_param {
|
549 |
+
bias_term: true
|
550 |
+
}
|
551 |
+
}
|
552 |
+
layer {
|
553 |
+
name: "layer_512_1_relu1"
|
554 |
+
type: "ReLU"
|
555 |
+
bottom: "layer_512_1_bn1"
|
556 |
+
top: "layer_512_1_bn1"
|
557 |
+
}
|
558 |
+
layer {
|
559 |
+
name: "layer_512_1_conv1_h"
|
560 |
+
type: "Convolution"
|
561 |
+
bottom: "layer_512_1_bn1"
|
562 |
+
top: "layer_512_1_conv1_h"
|
563 |
+
param {
|
564 |
+
lr_mult: 1.0
|
565 |
+
decay_mult: 1.0
|
566 |
+
}
|
567 |
+
convolution_param {
|
568 |
+
num_output: 128
|
569 |
+
bias_term: false
|
570 |
+
pad: 1
|
571 |
+
kernel_size: 3
|
572 |
+
stride: 1 # 2
|
573 |
+
weight_filler {
|
574 |
+
type: "msra"
|
575 |
+
}
|
576 |
+
bias_filler {
|
577 |
+
type: "constant"
|
578 |
+
value: 0.0
|
579 |
+
}
|
580 |
+
}
|
581 |
+
}
|
582 |
+
layer {
|
583 |
+
name: "layer_512_1_bn2_h"
|
584 |
+
type: "BatchNorm"
|
585 |
+
bottom: "layer_512_1_conv1_h"
|
586 |
+
top: "layer_512_1_conv1_h"
|
587 |
+
param {
|
588 |
+
lr_mult: 0.0
|
589 |
+
}
|
590 |
+
param {
|
591 |
+
lr_mult: 0.0
|
592 |
+
}
|
593 |
+
param {
|
594 |
+
lr_mult: 0.0
|
595 |
+
}
|
596 |
+
}
|
597 |
+
layer {
|
598 |
+
name: "layer_512_1_scale2_h"
|
599 |
+
type: "Scale"
|
600 |
+
bottom: "layer_512_1_conv1_h"
|
601 |
+
top: "layer_512_1_conv1_h"
|
602 |
+
param {
|
603 |
+
lr_mult: 1.0
|
604 |
+
decay_mult: 1.0
|
605 |
+
}
|
606 |
+
param {
|
607 |
+
lr_mult: 2.0
|
608 |
+
decay_mult: 1.0
|
609 |
+
}
|
610 |
+
scale_param {
|
611 |
+
bias_term: true
|
612 |
+
}
|
613 |
+
}
|
614 |
+
layer {
|
615 |
+
name: "layer_512_1_relu2"
|
616 |
+
type: "ReLU"
|
617 |
+
bottom: "layer_512_1_conv1_h"
|
618 |
+
top: "layer_512_1_conv1_h"
|
619 |
+
}
|
620 |
+
layer {
|
621 |
+
name: "layer_512_1_conv2_h"
|
622 |
+
type: "Convolution"
|
623 |
+
bottom: "layer_512_1_conv1_h"
|
624 |
+
top: "layer_512_1_conv2_h"
|
625 |
+
param {
|
626 |
+
lr_mult: 1.0
|
627 |
+
decay_mult: 1.0
|
628 |
+
}
|
629 |
+
convolution_param {
|
630 |
+
num_output: 256
|
631 |
+
bias_term: false
|
632 |
+
pad: 2 # 1
|
633 |
+
kernel_size: 3
|
634 |
+
stride: 1
|
635 |
+
dilation: 2
|
636 |
+
weight_filler {
|
637 |
+
type: "msra"
|
638 |
+
}
|
639 |
+
bias_filler {
|
640 |
+
type: "constant"
|
641 |
+
value: 0.0
|
642 |
+
}
|
643 |
+
}
|
644 |
+
}
|
645 |
+
layer {
|
646 |
+
name: "layer_512_1_conv_expand_h"
|
647 |
+
type: "Convolution"
|
648 |
+
bottom: "layer_512_1_bn1"
|
649 |
+
top: "layer_512_1_conv_expand_h"
|
650 |
+
param {
|
651 |
+
lr_mult: 1.0
|
652 |
+
decay_mult: 1.0
|
653 |
+
}
|
654 |
+
convolution_param {
|
655 |
+
num_output: 256
|
656 |
+
bias_term: false
|
657 |
+
pad: 0
|
658 |
+
kernel_size: 1
|
659 |
+
stride: 1 # 2
|
660 |
+
weight_filler {
|
661 |
+
type: "msra"
|
662 |
+
}
|
663 |
+
bias_filler {
|
664 |
+
type: "constant"
|
665 |
+
value: 0.0
|
666 |
+
}
|
667 |
+
}
|
668 |
+
}
|
669 |
+
layer {
|
670 |
+
name: "layer_512_1_sum"
|
671 |
+
type: "Eltwise"
|
672 |
+
bottom: "layer_512_1_conv2_h"
|
673 |
+
bottom: "layer_512_1_conv_expand_h"
|
674 |
+
top: "layer_512_1_sum"
|
675 |
+
}
|
676 |
+
layer {
|
677 |
+
name: "last_bn_h"
|
678 |
+
type: "BatchNorm"
|
679 |
+
bottom: "layer_512_1_sum"
|
680 |
+
top: "layer_512_1_sum"
|
681 |
+
param {
|
682 |
+
lr_mult: 0.0
|
683 |
+
}
|
684 |
+
param {
|
685 |
+
lr_mult: 0.0
|
686 |
+
}
|
687 |
+
param {
|
688 |
+
lr_mult: 0.0
|
689 |
+
}
|
690 |
+
}
|
691 |
+
layer {
|
692 |
+
name: "last_scale_h"
|
693 |
+
type: "Scale"
|
694 |
+
bottom: "layer_512_1_sum"
|
695 |
+
top: "layer_512_1_sum"
|
696 |
+
param {
|
697 |
+
lr_mult: 1.0
|
698 |
+
decay_mult: 1.0
|
699 |
+
}
|
700 |
+
param {
|
701 |
+
lr_mult: 2.0
|
702 |
+
decay_mult: 1.0
|
703 |
+
}
|
704 |
+
scale_param {
|
705 |
+
bias_term: true
|
706 |
+
}
|
707 |
+
}
|
708 |
+
layer {
|
709 |
+
name: "last_relu"
|
710 |
+
type: "ReLU"
|
711 |
+
bottom: "layer_512_1_sum"
|
712 |
+
top: "fc7"
|
713 |
+
}
|
714 |
+
|
715 |
+
layer {
|
716 |
+
name: "conv6_1_h"
|
717 |
+
type: "Convolution"
|
718 |
+
bottom: "fc7"
|
719 |
+
top: "conv6_1_h"
|
720 |
+
param {
|
721 |
+
lr_mult: 1
|
722 |
+
decay_mult: 1
|
723 |
+
}
|
724 |
+
param {
|
725 |
+
lr_mult: 2
|
726 |
+
decay_mult: 0
|
727 |
+
}
|
728 |
+
convolution_param {
|
729 |
+
num_output: 128
|
730 |
+
pad: 0
|
731 |
+
kernel_size: 1
|
732 |
+
stride: 1
|
733 |
+
weight_filler {
|
734 |
+
type: "xavier"
|
735 |
+
}
|
736 |
+
bias_filler {
|
737 |
+
type: "constant"
|
738 |
+
value: 0
|
739 |
+
}
|
740 |
+
}
|
741 |
+
}
|
742 |
+
layer {
|
743 |
+
name: "conv6_1_relu"
|
744 |
+
type: "ReLU"
|
745 |
+
bottom: "conv6_1_h"
|
746 |
+
top: "conv6_1_h"
|
747 |
+
}
|
748 |
+
layer {
|
749 |
+
name: "conv6_2_h"
|
750 |
+
type: "Convolution"
|
751 |
+
bottom: "conv6_1_h"
|
752 |
+
top: "conv6_2_h"
|
753 |
+
param {
|
754 |
+
lr_mult: 1
|
755 |
+
decay_mult: 1
|
756 |
+
}
|
757 |
+
param {
|
758 |
+
lr_mult: 2
|
759 |
+
decay_mult: 0
|
760 |
+
}
|
761 |
+
convolution_param {
|
762 |
+
num_output: 256
|
763 |
+
pad: 1
|
764 |
+
kernel_size: 3
|
765 |
+
stride: 2
|
766 |
+
weight_filler {
|
767 |
+
type: "xavier"
|
768 |
+
}
|
769 |
+
bias_filler {
|
770 |
+
type: "constant"
|
771 |
+
value: 0
|
772 |
+
}
|
773 |
+
}
|
774 |
+
}
|
775 |
+
layer {
|
776 |
+
name: "conv6_2_relu"
|
777 |
+
type: "ReLU"
|
778 |
+
bottom: "conv6_2_h"
|
779 |
+
top: "conv6_2_h"
|
780 |
+
}
|
781 |
+
layer {
|
782 |
+
name: "conv7_1_h"
|
783 |
+
type: "Convolution"
|
784 |
+
bottom: "conv6_2_h"
|
785 |
+
top: "conv7_1_h"
|
786 |
+
param {
|
787 |
+
lr_mult: 1
|
788 |
+
decay_mult: 1
|
789 |
+
}
|
790 |
+
param {
|
791 |
+
lr_mult: 2
|
792 |
+
decay_mult: 0
|
793 |
+
}
|
794 |
+
convolution_param {
|
795 |
+
num_output: 64
|
796 |
+
pad: 0
|
797 |
+
kernel_size: 1
|
798 |
+
stride: 1
|
799 |
+
weight_filler {
|
800 |
+
type: "xavier"
|
801 |
+
}
|
802 |
+
bias_filler {
|
803 |
+
type: "constant"
|
804 |
+
value: 0
|
805 |
+
}
|
806 |
+
}
|
807 |
+
}
|
808 |
+
layer {
|
809 |
+
name: "conv7_1_relu"
|
810 |
+
type: "ReLU"
|
811 |
+
bottom: "conv7_1_h"
|
812 |
+
top: "conv7_1_h"
|
813 |
+
}
|
814 |
+
layer {
|
815 |
+
name: "conv7_2_h"
|
816 |
+
type: "Convolution"
|
817 |
+
bottom: "conv7_1_h"
|
818 |
+
top: "conv7_2_h"
|
819 |
+
param {
|
820 |
+
lr_mult: 1
|
821 |
+
decay_mult: 1
|
822 |
+
}
|
823 |
+
param {
|
824 |
+
lr_mult: 2
|
825 |
+
decay_mult: 0
|
826 |
+
}
|
827 |
+
convolution_param {
|
828 |
+
num_output: 128
|
829 |
+
pad: 1
|
830 |
+
kernel_size: 3
|
831 |
+
stride: 2
|
832 |
+
weight_filler {
|
833 |
+
type: "xavier"
|
834 |
+
}
|
835 |
+
bias_filler {
|
836 |
+
type: "constant"
|
837 |
+
value: 0
|
838 |
+
}
|
839 |
+
}
|
840 |
+
}
|
841 |
+
layer {
|
842 |
+
name: "conv7_2_relu"
|
843 |
+
type: "ReLU"
|
844 |
+
bottom: "conv7_2_h"
|
845 |
+
top: "conv7_2_h"
|
846 |
+
}
|
847 |
+
layer {
|
848 |
+
name: "conv8_1_h"
|
849 |
+
type: "Convolution"
|
850 |
+
bottom: "conv7_2_h"
|
851 |
+
top: "conv8_1_h"
|
852 |
+
param {
|
853 |
+
lr_mult: 1
|
854 |
+
decay_mult: 1
|
855 |
+
}
|
856 |
+
param {
|
857 |
+
lr_mult: 2
|
858 |
+
decay_mult: 0
|
859 |
+
}
|
860 |
+
convolution_param {
|
861 |
+
num_output: 64
|
862 |
+
pad: 0
|
863 |
+
kernel_size: 1
|
864 |
+
stride: 1
|
865 |
+
weight_filler {
|
866 |
+
type: "xavier"
|
867 |
+
}
|
868 |
+
bias_filler {
|
869 |
+
type: "constant"
|
870 |
+
value: 0
|
871 |
+
}
|
872 |
+
}
|
873 |
+
}
|
874 |
+
layer {
|
875 |
+
name: "conv8_1_relu"
|
876 |
+
type: "ReLU"
|
877 |
+
bottom: "conv8_1_h"
|
878 |
+
top: "conv8_1_h"
|
879 |
+
}
|
880 |
+
layer {
|
881 |
+
name: "conv8_2_h"
|
882 |
+
type: "Convolution"
|
883 |
+
bottom: "conv8_1_h"
|
884 |
+
top: "conv8_2_h"
|
885 |
+
param {
|
886 |
+
lr_mult: 1
|
887 |
+
decay_mult: 1
|
888 |
+
}
|
889 |
+
param {
|
890 |
+
lr_mult: 2
|
891 |
+
decay_mult: 0
|
892 |
+
}
|
893 |
+
convolution_param {
|
894 |
+
num_output: 128
|
895 |
+
pad: 1
|
896 |
+
kernel_size: 3
|
897 |
+
stride: 1
|
898 |
+
weight_filler {
|
899 |
+
type: "xavier"
|
900 |
+
}
|
901 |
+
bias_filler {
|
902 |
+
type: "constant"
|
903 |
+
value: 0
|
904 |
+
}
|
905 |
+
}
|
906 |
+
}
|
907 |
+
layer {
|
908 |
+
name: "conv8_2_relu"
|
909 |
+
type: "ReLU"
|
910 |
+
bottom: "conv8_2_h"
|
911 |
+
top: "conv8_2_h"
|
912 |
+
}
|
913 |
+
layer {
|
914 |
+
name: "conv9_1_h"
|
915 |
+
type: "Convolution"
|
916 |
+
bottom: "conv8_2_h"
|
917 |
+
top: "conv9_1_h"
|
918 |
+
param {
|
919 |
+
lr_mult: 1
|
920 |
+
decay_mult: 1
|
921 |
+
}
|
922 |
+
param {
|
923 |
+
lr_mult: 2
|
924 |
+
decay_mult: 0
|
925 |
+
}
|
926 |
+
convolution_param {
|
927 |
+
num_output: 64
|
928 |
+
pad: 0
|
929 |
+
kernel_size: 1
|
930 |
+
stride: 1
|
931 |
+
weight_filler {
|
932 |
+
type: "xavier"
|
933 |
+
}
|
934 |
+
bias_filler {
|
935 |
+
type: "constant"
|
936 |
+
value: 0
|
937 |
+
}
|
938 |
+
}
|
939 |
+
}
|
940 |
+
layer {
|
941 |
+
name: "conv9_1_relu"
|
942 |
+
type: "ReLU"
|
943 |
+
bottom: "conv9_1_h"
|
944 |
+
top: "conv9_1_h"
|
945 |
+
}
|
946 |
+
layer {
|
947 |
+
name: "conv9_2_h"
|
948 |
+
type: "Convolution"
|
949 |
+
bottom: "conv9_1_h"
|
950 |
+
top: "conv9_2_h"
|
951 |
+
param {
|
952 |
+
lr_mult: 1
|
953 |
+
decay_mult: 1
|
954 |
+
}
|
955 |
+
param {
|
956 |
+
lr_mult: 2
|
957 |
+
decay_mult: 0
|
958 |
+
}
|
959 |
+
convolution_param {
|
960 |
+
num_output: 128
|
961 |
+
pad: 1
|
962 |
+
kernel_size: 3
|
963 |
+
stride: 1
|
964 |
+
weight_filler {
|
965 |
+
type: "xavier"
|
966 |
+
}
|
967 |
+
bias_filler {
|
968 |
+
type: "constant"
|
969 |
+
value: 0
|
970 |
+
}
|
971 |
+
}
|
972 |
+
}
|
973 |
+
layer {
|
974 |
+
name: "conv9_2_relu"
|
975 |
+
type: "ReLU"
|
976 |
+
bottom: "conv9_2_h"
|
977 |
+
top: "conv9_2_h"
|
978 |
+
}
|
979 |
+
layer {
|
980 |
+
name: "conv4_3_norm"
|
981 |
+
type: "Normalize"
|
982 |
+
bottom: "layer_256_1_bn1"
|
983 |
+
top: "conv4_3_norm"
|
984 |
+
norm_param {
|
985 |
+
across_spatial: false
|
986 |
+
scale_filler {
|
987 |
+
type: "constant"
|
988 |
+
value: 20
|
989 |
+
}
|
990 |
+
channel_shared: false
|
991 |
+
}
|
992 |
+
}
|
993 |
+
layer {
|
994 |
+
name: "conv4_3_norm_mbox_loc"
|
995 |
+
type: "Convolution"
|
996 |
+
bottom: "conv4_3_norm"
|
997 |
+
top: "conv4_3_norm_mbox_loc"
|
998 |
+
param {
|
999 |
+
lr_mult: 1
|
1000 |
+
decay_mult: 1
|
1001 |
+
}
|
1002 |
+
param {
|
1003 |
+
lr_mult: 2
|
1004 |
+
decay_mult: 0
|
1005 |
+
}
|
1006 |
+
convolution_param {
|
1007 |
+
num_output: 16
|
1008 |
+
pad: 1
|
1009 |
+
kernel_size: 3
|
1010 |
+
stride: 1
|
1011 |
+
weight_filler {
|
1012 |
+
type: "xavier"
|
1013 |
+
}
|
1014 |
+
bias_filler {
|
1015 |
+
type: "constant"
|
1016 |
+
value: 0
|
1017 |
+
}
|
1018 |
+
}
|
1019 |
+
}
|
1020 |
+
layer {
|
1021 |
+
name: "conv4_3_norm_mbox_loc_perm"
|
1022 |
+
type: "Permute"
|
1023 |
+
bottom: "conv4_3_norm_mbox_loc"
|
1024 |
+
top: "conv4_3_norm_mbox_loc_perm"
|
1025 |
+
permute_param {
|
1026 |
+
order: 0
|
1027 |
+
order: 2
|
1028 |
+
order: 3
|
1029 |
+
order: 1
|
1030 |
+
}
|
1031 |
+
}
|
1032 |
+
layer {
|
1033 |
+
name: "conv4_3_norm_mbox_loc_flat"
|
1034 |
+
type: "Flatten"
|
1035 |
+
bottom: "conv4_3_norm_mbox_loc_perm"
|
1036 |
+
top: "conv4_3_norm_mbox_loc_flat"
|
1037 |
+
flatten_param {
|
1038 |
+
axis: 1
|
1039 |
+
}
|
1040 |
+
}
|
1041 |
+
layer {
|
1042 |
+
name: "conv4_3_norm_mbox_conf"
|
1043 |
+
type: "Convolution"
|
1044 |
+
bottom: "conv4_3_norm"
|
1045 |
+
top: "conv4_3_norm_mbox_conf"
|
1046 |
+
param {
|
1047 |
+
lr_mult: 1
|
1048 |
+
decay_mult: 1
|
1049 |
+
}
|
1050 |
+
param {
|
1051 |
+
lr_mult: 2
|
1052 |
+
decay_mult: 0
|
1053 |
+
}
|
1054 |
+
convolution_param {
|
1055 |
+
num_output: 8 # 84
|
1056 |
+
pad: 1
|
1057 |
+
kernel_size: 3
|
1058 |
+
stride: 1
|
1059 |
+
weight_filler {
|
1060 |
+
type: "xavier"
|
1061 |
+
}
|
1062 |
+
bias_filler {
|
1063 |
+
type: "constant"
|
1064 |
+
value: 0
|
1065 |
+
}
|
1066 |
+
}
|
1067 |
+
}
|
1068 |
+
layer {
|
1069 |
+
name: "conv4_3_norm_mbox_conf_perm"
|
1070 |
+
type: "Permute"
|
1071 |
+
bottom: "conv4_3_norm_mbox_conf"
|
1072 |
+
top: "conv4_3_norm_mbox_conf_perm"
|
1073 |
+
permute_param {
|
1074 |
+
order: 0
|
1075 |
+
order: 2
|
1076 |
+
order: 3
|
1077 |
+
order: 1
|
1078 |
+
}
|
1079 |
+
}
|
1080 |
+
layer {
|
1081 |
+
name: "conv4_3_norm_mbox_conf_flat"
|
1082 |
+
type: "Flatten"
|
1083 |
+
bottom: "conv4_3_norm_mbox_conf_perm"
|
1084 |
+
top: "conv4_3_norm_mbox_conf_flat"
|
1085 |
+
flatten_param {
|
1086 |
+
axis: 1
|
1087 |
+
}
|
1088 |
+
}
|
1089 |
+
layer {
|
1090 |
+
name: "conv4_3_norm_mbox_priorbox"
|
1091 |
+
type: "PriorBox"
|
1092 |
+
bottom: "conv4_3_norm"
|
1093 |
+
bottom: "data"
|
1094 |
+
top: "conv4_3_norm_mbox_priorbox"
|
1095 |
+
prior_box_param {
|
1096 |
+
min_size: 30.0
|
1097 |
+
max_size: 60.0
|
1098 |
+
aspect_ratio: 2
|
1099 |
+
flip: true
|
1100 |
+
clip: false
|
1101 |
+
variance: 0.1
|
1102 |
+
variance: 0.1
|
1103 |
+
variance: 0.2
|
1104 |
+
variance: 0.2
|
1105 |
+
step: 8
|
1106 |
+
offset: 0.5
|
1107 |
+
}
|
1108 |
+
}
|
1109 |
+
layer {
|
1110 |
+
name: "fc7_mbox_loc"
|
1111 |
+
type: "Convolution"
|
1112 |
+
bottom: "fc7"
|
1113 |
+
top: "fc7_mbox_loc"
|
1114 |
+
param {
|
1115 |
+
lr_mult: 1
|
1116 |
+
decay_mult: 1
|
1117 |
+
}
|
1118 |
+
param {
|
1119 |
+
lr_mult: 2
|
1120 |
+
decay_mult: 0
|
1121 |
+
}
|
1122 |
+
convolution_param {
|
1123 |
+
num_output: 24
|
1124 |
+
pad: 1
|
1125 |
+
kernel_size: 3
|
1126 |
+
stride: 1
|
1127 |
+
weight_filler {
|
1128 |
+
type: "xavier"
|
1129 |
+
}
|
1130 |
+
bias_filler {
|
1131 |
+
type: "constant"
|
1132 |
+
value: 0
|
1133 |
+
}
|
1134 |
+
}
|
1135 |
+
}
|
1136 |
+
layer {
|
1137 |
+
name: "fc7_mbox_loc_perm"
|
1138 |
+
type: "Permute"
|
1139 |
+
bottom: "fc7_mbox_loc"
|
1140 |
+
top: "fc7_mbox_loc_perm"
|
1141 |
+
permute_param {
|
1142 |
+
order: 0
|
1143 |
+
order: 2
|
1144 |
+
order: 3
|
1145 |
+
order: 1
|
1146 |
+
}
|
1147 |
+
}
|
1148 |
+
layer {
|
1149 |
+
name: "fc7_mbox_loc_flat"
|
1150 |
+
type: "Flatten"
|
1151 |
+
bottom: "fc7_mbox_loc_perm"
|
1152 |
+
top: "fc7_mbox_loc_flat"
|
1153 |
+
flatten_param {
|
1154 |
+
axis: 1
|
1155 |
+
}
|
1156 |
+
}
|
1157 |
+
layer {
|
1158 |
+
name: "fc7_mbox_conf"
|
1159 |
+
type: "Convolution"
|
1160 |
+
bottom: "fc7"
|
1161 |
+
top: "fc7_mbox_conf"
|
1162 |
+
param {
|
1163 |
+
lr_mult: 1
|
1164 |
+
decay_mult: 1
|
1165 |
+
}
|
1166 |
+
param {
|
1167 |
+
lr_mult: 2
|
1168 |
+
decay_mult: 0
|
1169 |
+
}
|
1170 |
+
convolution_param {
|
1171 |
+
num_output: 12 # 126
|
1172 |
+
pad: 1
|
1173 |
+
kernel_size: 3
|
1174 |
+
stride: 1
|
1175 |
+
weight_filler {
|
1176 |
+
type: "xavier"
|
1177 |
+
}
|
1178 |
+
bias_filler {
|
1179 |
+
type: "constant"
|
1180 |
+
value: 0
|
1181 |
+
}
|
1182 |
+
}
|
1183 |
+
}
|
1184 |
+
layer {
|
1185 |
+
name: "fc7_mbox_conf_perm"
|
1186 |
+
type: "Permute"
|
1187 |
+
bottom: "fc7_mbox_conf"
|
1188 |
+
top: "fc7_mbox_conf_perm"
|
1189 |
+
permute_param {
|
1190 |
+
order: 0
|
1191 |
+
order: 2
|
1192 |
+
order: 3
|
1193 |
+
order: 1
|
1194 |
+
}
|
1195 |
+
}
|
1196 |
+
layer {
|
1197 |
+
name: "fc7_mbox_conf_flat"
|
1198 |
+
type: "Flatten"
|
1199 |
+
bottom: "fc7_mbox_conf_perm"
|
1200 |
+
top: "fc7_mbox_conf_flat"
|
1201 |
+
flatten_param {
|
1202 |
+
axis: 1
|
1203 |
+
}
|
1204 |
+
}
|
1205 |
+
layer {
|
1206 |
+
name: "fc7_mbox_priorbox"
|
1207 |
+
type: "PriorBox"
|
1208 |
+
bottom: "fc7"
|
1209 |
+
bottom: "data"
|
1210 |
+
top: "fc7_mbox_priorbox"
|
1211 |
+
prior_box_param {
|
1212 |
+
min_size: 60.0
|
1213 |
+
max_size: 111.0
|
1214 |
+
aspect_ratio: 2
|
1215 |
+
aspect_ratio: 3
|
1216 |
+
flip: true
|
1217 |
+
clip: false
|
1218 |
+
variance: 0.1
|
1219 |
+
variance: 0.1
|
1220 |
+
variance: 0.2
|
1221 |
+
variance: 0.2
|
1222 |
+
step: 16
|
1223 |
+
offset: 0.5
|
1224 |
+
}
|
1225 |
+
}
|
1226 |
+
layer {
|
1227 |
+
name: "conv6_2_mbox_loc"
|
1228 |
+
type: "Convolution"
|
1229 |
+
bottom: "conv6_2_h"
|
1230 |
+
top: "conv6_2_mbox_loc"
|
1231 |
+
param {
|
1232 |
+
lr_mult: 1
|
1233 |
+
decay_mult: 1
|
1234 |
+
}
|
1235 |
+
param {
|
1236 |
+
lr_mult: 2
|
1237 |
+
decay_mult: 0
|
1238 |
+
}
|
1239 |
+
convolution_param {
|
1240 |
+
num_output: 24
|
1241 |
+
pad: 1
|
1242 |
+
kernel_size: 3
|
1243 |
+
stride: 1
|
1244 |
+
weight_filler {
|
1245 |
+
type: "xavier"
|
1246 |
+
}
|
1247 |
+
bias_filler {
|
1248 |
+
type: "constant"
|
1249 |
+
value: 0
|
1250 |
+
}
|
1251 |
+
}
|
1252 |
+
}
|
1253 |
+
layer {
|
1254 |
+
name: "conv6_2_mbox_loc_perm"
|
1255 |
+
type: "Permute"
|
1256 |
+
bottom: "conv6_2_mbox_loc"
|
1257 |
+
top: "conv6_2_mbox_loc_perm"
|
1258 |
+
permute_param {
|
1259 |
+
order: 0
|
1260 |
+
order: 2
|
1261 |
+
order: 3
|
1262 |
+
order: 1
|
1263 |
+
}
|
1264 |
+
}
|
1265 |
+
layer {
|
1266 |
+
name: "conv6_2_mbox_loc_flat"
|
1267 |
+
type: "Flatten"
|
1268 |
+
bottom: "conv6_2_mbox_loc_perm"
|
1269 |
+
top: "conv6_2_mbox_loc_flat"
|
1270 |
+
flatten_param {
|
1271 |
+
axis: 1
|
1272 |
+
}
|
1273 |
+
}
|
1274 |
+
layer {
|
1275 |
+
name: "conv6_2_mbox_conf"
|
1276 |
+
type: "Convolution"
|
1277 |
+
bottom: "conv6_2_h"
|
1278 |
+
top: "conv6_2_mbox_conf"
|
1279 |
+
param {
|
1280 |
+
lr_mult: 1
|
1281 |
+
decay_mult: 1
|
1282 |
+
}
|
1283 |
+
param {
|
1284 |
+
lr_mult: 2
|
1285 |
+
decay_mult: 0
|
1286 |
+
}
|
1287 |
+
convolution_param {
|
1288 |
+
num_output: 12 # 126
|
1289 |
+
pad: 1
|
1290 |
+
kernel_size: 3
|
1291 |
+
stride: 1
|
1292 |
+
weight_filler {
|
1293 |
+
type: "xavier"
|
1294 |
+
}
|
1295 |
+
bias_filler {
|
1296 |
+
type: "constant"
|
1297 |
+
value: 0
|
1298 |
+
}
|
1299 |
+
}
|
1300 |
+
}
|
1301 |
+
layer {
|
1302 |
+
name: "conv6_2_mbox_conf_perm"
|
1303 |
+
type: "Permute"
|
1304 |
+
bottom: "conv6_2_mbox_conf"
|
1305 |
+
top: "conv6_2_mbox_conf_perm"
|
1306 |
+
permute_param {
|
1307 |
+
order: 0
|
1308 |
+
order: 2
|
1309 |
+
order: 3
|
1310 |
+
order: 1
|
1311 |
+
}
|
1312 |
+
}
|
1313 |
+
layer {
|
1314 |
+
name: "conv6_2_mbox_conf_flat"
|
1315 |
+
type: "Flatten"
|
1316 |
+
bottom: "conv6_2_mbox_conf_perm"
|
1317 |
+
top: "conv6_2_mbox_conf_flat"
|
1318 |
+
flatten_param {
|
1319 |
+
axis: 1
|
1320 |
+
}
|
1321 |
+
}
|
1322 |
+
layer {
|
1323 |
+
name: "conv6_2_mbox_priorbox"
|
1324 |
+
type: "PriorBox"
|
1325 |
+
bottom: "conv6_2_h"
|
1326 |
+
bottom: "data"
|
1327 |
+
top: "conv6_2_mbox_priorbox"
|
1328 |
+
prior_box_param {
|
1329 |
+
min_size: 111.0
|
1330 |
+
max_size: 162.0
|
1331 |
+
aspect_ratio: 2
|
1332 |
+
aspect_ratio: 3
|
1333 |
+
flip: true
|
1334 |
+
clip: false
|
1335 |
+
variance: 0.1
|
1336 |
+
variance: 0.1
|
1337 |
+
variance: 0.2
|
1338 |
+
variance: 0.2
|
1339 |
+
step: 32
|
1340 |
+
offset: 0.5
|
1341 |
+
}
|
1342 |
+
}
|
1343 |
+
layer {
|
1344 |
+
name: "conv7_2_mbox_loc"
|
1345 |
+
type: "Convolution"
|
1346 |
+
bottom: "conv7_2_h"
|
1347 |
+
top: "conv7_2_mbox_loc"
|
1348 |
+
param {
|
1349 |
+
lr_mult: 1
|
1350 |
+
decay_mult: 1
|
1351 |
+
}
|
1352 |
+
param {
|
1353 |
+
lr_mult: 2
|
1354 |
+
decay_mult: 0
|
1355 |
+
}
|
1356 |
+
convolution_param {
|
1357 |
+
num_output: 24
|
1358 |
+
pad: 1
|
1359 |
+
kernel_size: 3
|
1360 |
+
stride: 1
|
1361 |
+
weight_filler {
|
1362 |
+
type: "xavier"
|
1363 |
+
}
|
1364 |
+
bias_filler {
|
1365 |
+
type: "constant"
|
1366 |
+
value: 0
|
1367 |
+
}
|
1368 |
+
}
|
1369 |
+
}
|
1370 |
+
layer {
|
1371 |
+
name: "conv7_2_mbox_loc_perm"
|
1372 |
+
type: "Permute"
|
1373 |
+
bottom: "conv7_2_mbox_loc"
|
1374 |
+
top: "conv7_2_mbox_loc_perm"
|
1375 |
+
permute_param {
|
1376 |
+
order: 0
|
1377 |
+
order: 2
|
1378 |
+
order: 3
|
1379 |
+
order: 1
|
1380 |
+
}
|
1381 |
+
}
|
1382 |
+
layer {
|
1383 |
+
name: "conv7_2_mbox_loc_flat"
|
1384 |
+
type: "Flatten"
|
1385 |
+
bottom: "conv7_2_mbox_loc_perm"
|
1386 |
+
top: "conv7_2_mbox_loc_flat"
|
1387 |
+
flatten_param {
|
1388 |
+
axis: 1
|
1389 |
+
}
|
1390 |
+
}
|
1391 |
+
layer {
|
1392 |
+
name: "conv7_2_mbox_conf"
|
1393 |
+
type: "Convolution"
|
1394 |
+
bottom: "conv7_2_h"
|
1395 |
+
top: "conv7_2_mbox_conf"
|
1396 |
+
param {
|
1397 |
+
lr_mult: 1
|
1398 |
+
decay_mult: 1
|
1399 |
+
}
|
1400 |
+
param {
|
1401 |
+
lr_mult: 2
|
1402 |
+
decay_mult: 0
|
1403 |
+
}
|
1404 |
+
convolution_param {
|
1405 |
+
num_output: 12 # 126
|
1406 |
+
pad: 1
|
1407 |
+
kernel_size: 3
|
1408 |
+
stride: 1
|
1409 |
+
weight_filler {
|
1410 |
+
type: "xavier"
|
1411 |
+
}
|
1412 |
+
bias_filler {
|
1413 |
+
type: "constant"
|
1414 |
+
value: 0
|
1415 |
+
}
|
1416 |
+
}
|
1417 |
+
}
|
1418 |
+
layer {
|
1419 |
+
name: "conv7_2_mbox_conf_perm"
|
1420 |
+
type: "Permute"
|
1421 |
+
bottom: "conv7_2_mbox_conf"
|
1422 |
+
top: "conv7_2_mbox_conf_perm"
|
1423 |
+
permute_param {
|
1424 |
+
order: 0
|
1425 |
+
order: 2
|
1426 |
+
order: 3
|
1427 |
+
order: 1
|
1428 |
+
}
|
1429 |
+
}
|
1430 |
+
layer {
|
1431 |
+
name: "conv7_2_mbox_conf_flat"
|
1432 |
+
type: "Flatten"
|
1433 |
+
bottom: "conv7_2_mbox_conf_perm"
|
1434 |
+
top: "conv7_2_mbox_conf_flat"
|
1435 |
+
flatten_param {
|
1436 |
+
axis: 1
|
1437 |
+
}
|
1438 |
+
}
|
1439 |
+
layer {
|
1440 |
+
name: "conv7_2_mbox_priorbox"
|
1441 |
+
type: "PriorBox"
|
1442 |
+
bottom: "conv7_2_h"
|
1443 |
+
bottom: "data"
|
1444 |
+
top: "conv7_2_mbox_priorbox"
|
1445 |
+
prior_box_param {
|
1446 |
+
min_size: 162.0
|
1447 |
+
max_size: 213.0
|
1448 |
+
aspect_ratio: 2
|
1449 |
+
aspect_ratio: 3
|
1450 |
+
flip: true
|
1451 |
+
clip: false
|
1452 |
+
variance: 0.1
|
1453 |
+
variance: 0.1
|
1454 |
+
variance: 0.2
|
1455 |
+
variance: 0.2
|
1456 |
+
step: 64
|
1457 |
+
offset: 0.5
|
1458 |
+
}
|
1459 |
+
}
|
1460 |
+
layer {
|
1461 |
+
name: "conv8_2_mbox_loc"
|
1462 |
+
type: "Convolution"
|
1463 |
+
bottom: "conv8_2_h"
|
1464 |
+
top: "conv8_2_mbox_loc"
|
1465 |
+
param {
|
1466 |
+
lr_mult: 1
|
1467 |
+
decay_mult: 1
|
1468 |
+
}
|
1469 |
+
param {
|
1470 |
+
lr_mult: 2
|
1471 |
+
decay_mult: 0
|
1472 |
+
}
|
1473 |
+
convolution_param {
|
1474 |
+
num_output: 16
|
1475 |
+
pad: 1
|
1476 |
+
kernel_size: 3
|
1477 |
+
stride: 1
|
1478 |
+
weight_filler {
|
1479 |
+
type: "xavier"
|
1480 |
+
}
|
1481 |
+
bias_filler {
|
1482 |
+
type: "constant"
|
1483 |
+
value: 0
|
1484 |
+
}
|
1485 |
+
}
|
1486 |
+
}
|
1487 |
+
layer {
|
1488 |
+
name: "conv8_2_mbox_loc_perm"
|
1489 |
+
type: "Permute"
|
1490 |
+
bottom: "conv8_2_mbox_loc"
|
1491 |
+
top: "conv8_2_mbox_loc_perm"
|
1492 |
+
permute_param {
|
1493 |
+
order: 0
|
1494 |
+
order: 2
|
1495 |
+
order: 3
|
1496 |
+
order: 1
|
1497 |
+
}
|
1498 |
+
}
|
1499 |
+
layer {
|
1500 |
+
name: "conv8_2_mbox_loc_flat"
|
1501 |
+
type: "Flatten"
|
1502 |
+
bottom: "conv8_2_mbox_loc_perm"
|
1503 |
+
top: "conv8_2_mbox_loc_flat"
|
1504 |
+
flatten_param {
|
1505 |
+
axis: 1
|
1506 |
+
}
|
1507 |
+
}
|
1508 |
+
layer {
|
1509 |
+
name: "conv8_2_mbox_conf"
|
1510 |
+
type: "Convolution"
|
1511 |
+
bottom: "conv8_2_h"
|
1512 |
+
top: "conv8_2_mbox_conf"
|
1513 |
+
param {
|
1514 |
+
lr_mult: 1
|
1515 |
+
decay_mult: 1
|
1516 |
+
}
|
1517 |
+
param {
|
1518 |
+
lr_mult: 2
|
1519 |
+
decay_mult: 0
|
1520 |
+
}
|
1521 |
+
convolution_param {
|
1522 |
+
num_output: 8 # 84
|
1523 |
+
pad: 1
|
1524 |
+
kernel_size: 3
|
1525 |
+
stride: 1
|
1526 |
+
weight_filler {
|
1527 |
+
type: "xavier"
|
1528 |
+
}
|
1529 |
+
bias_filler {
|
1530 |
+
type: "constant"
|
1531 |
+
value: 0
|
1532 |
+
}
|
1533 |
+
}
|
1534 |
+
}
|
1535 |
+
layer {
|
1536 |
+
name: "conv8_2_mbox_conf_perm"
|
1537 |
+
type: "Permute"
|
1538 |
+
bottom: "conv8_2_mbox_conf"
|
1539 |
+
top: "conv8_2_mbox_conf_perm"
|
1540 |
+
permute_param {
|
1541 |
+
order: 0
|
1542 |
+
order: 2
|
1543 |
+
order: 3
|
1544 |
+
order: 1
|
1545 |
+
}
|
1546 |
+
}
|
1547 |
+
layer {
|
1548 |
+
name: "conv8_2_mbox_conf_flat"
|
1549 |
+
type: "Flatten"
|
1550 |
+
bottom: "conv8_2_mbox_conf_perm"
|
1551 |
+
top: "conv8_2_mbox_conf_flat"
|
1552 |
+
flatten_param {
|
1553 |
+
axis: 1
|
1554 |
+
}
|
1555 |
+
}
|
1556 |
+
layer {
|
1557 |
+
name: "conv8_2_mbox_priorbox"
|
1558 |
+
type: "PriorBox"
|
1559 |
+
bottom: "conv8_2_h"
|
1560 |
+
bottom: "data"
|
1561 |
+
top: "conv8_2_mbox_priorbox"
|
1562 |
+
prior_box_param {
|
1563 |
+
min_size: 213.0
|
1564 |
+
max_size: 264.0
|
1565 |
+
aspect_ratio: 2
|
1566 |
+
flip: true
|
1567 |
+
clip: false
|
1568 |
+
variance: 0.1
|
1569 |
+
variance: 0.1
|
1570 |
+
variance: 0.2
|
1571 |
+
variance: 0.2
|
1572 |
+
step: 100
|
1573 |
+
offset: 0.5
|
1574 |
+
}
|
1575 |
+
}
|
1576 |
+
layer {
|
1577 |
+
name: "conv9_2_mbox_loc"
|
1578 |
+
type: "Convolution"
|
1579 |
+
bottom: "conv9_2_h"
|
1580 |
+
top: "conv9_2_mbox_loc"
|
1581 |
+
param {
|
1582 |
+
lr_mult: 1
|
1583 |
+
decay_mult: 1
|
1584 |
+
}
|
1585 |
+
param {
|
1586 |
+
lr_mult: 2
|
1587 |
+
decay_mult: 0
|
1588 |
+
}
|
1589 |
+
convolution_param {
|
1590 |
+
num_output: 16
|
1591 |
+
pad: 1
|
1592 |
+
kernel_size: 3
|
1593 |
+
stride: 1
|
1594 |
+
weight_filler {
|
1595 |
+
type: "xavier"
|
1596 |
+
}
|
1597 |
+
bias_filler {
|
1598 |
+
type: "constant"
|
1599 |
+
value: 0
|
1600 |
+
}
|
1601 |
+
}
|
1602 |
+
}
|
1603 |
+
layer {
|
1604 |
+
name: "conv9_2_mbox_loc_perm"
|
1605 |
+
type: "Permute"
|
1606 |
+
bottom: "conv9_2_mbox_loc"
|
1607 |
+
top: "conv9_2_mbox_loc_perm"
|
1608 |
+
permute_param {
|
1609 |
+
order: 0
|
1610 |
+
order: 2
|
1611 |
+
order: 3
|
1612 |
+
order: 1
|
1613 |
+
}
|
1614 |
+
}
|
1615 |
+
layer {
|
1616 |
+
name: "conv9_2_mbox_loc_flat"
|
1617 |
+
type: "Flatten"
|
1618 |
+
bottom: "conv9_2_mbox_loc_perm"
|
1619 |
+
top: "conv9_2_mbox_loc_flat"
|
1620 |
+
flatten_param {
|
1621 |
+
axis: 1
|
1622 |
+
}
|
1623 |
+
}
|
1624 |
+
layer {
|
1625 |
+
name: "conv9_2_mbox_conf"
|
1626 |
+
type: "Convolution"
|
1627 |
+
bottom: "conv9_2_h"
|
1628 |
+
top: "conv9_2_mbox_conf"
|
1629 |
+
param {
|
1630 |
+
lr_mult: 1
|
1631 |
+
decay_mult: 1
|
1632 |
+
}
|
1633 |
+
param {
|
1634 |
+
lr_mult: 2
|
1635 |
+
decay_mult: 0
|
1636 |
+
}
|
1637 |
+
convolution_param {
|
1638 |
+
num_output: 8 # 84
|
1639 |
+
pad: 1
|
1640 |
+
kernel_size: 3
|
1641 |
+
stride: 1
|
1642 |
+
weight_filler {
|
1643 |
+
type: "xavier"
|
1644 |
+
}
|
1645 |
+
bias_filler {
|
1646 |
+
type: "constant"
|
1647 |
+
value: 0
|
1648 |
+
}
|
1649 |
+
}
|
1650 |
+
}
|
1651 |
+
layer {
|
1652 |
+
name: "conv9_2_mbox_conf_perm"
|
1653 |
+
type: "Permute"
|
1654 |
+
bottom: "conv9_2_mbox_conf"
|
1655 |
+
top: "conv9_2_mbox_conf_perm"
|
1656 |
+
permute_param {
|
1657 |
+
order: 0
|
1658 |
+
order: 2
|
1659 |
+
order: 3
|
1660 |
+
order: 1
|
1661 |
+
}
|
1662 |
+
}
|
1663 |
+
layer {
|
1664 |
+
name: "conv9_2_mbox_conf_flat"
|
1665 |
+
type: "Flatten"
|
1666 |
+
bottom: "conv9_2_mbox_conf_perm"
|
1667 |
+
top: "conv9_2_mbox_conf_flat"
|
1668 |
+
flatten_param {
|
1669 |
+
axis: 1
|
1670 |
+
}
|
1671 |
+
}
|
1672 |
+
layer {
|
1673 |
+
name: "conv9_2_mbox_priorbox"
|
1674 |
+
type: "PriorBox"
|
1675 |
+
bottom: "conv9_2_h"
|
1676 |
+
bottom: "data"
|
1677 |
+
top: "conv9_2_mbox_priorbox"
|
1678 |
+
prior_box_param {
|
1679 |
+
min_size: 264.0
|
1680 |
+
max_size: 315.0
|
1681 |
+
aspect_ratio: 2
|
1682 |
+
flip: true
|
1683 |
+
clip: false
|
1684 |
+
variance: 0.1
|
1685 |
+
variance: 0.1
|
1686 |
+
variance: 0.2
|
1687 |
+
variance: 0.2
|
1688 |
+
step: 300
|
1689 |
+
offset: 0.5
|
1690 |
+
}
|
1691 |
+
}
|
1692 |
+
layer {
|
1693 |
+
name: "mbox_loc"
|
1694 |
+
type: "Concat"
|
1695 |
+
bottom: "conv4_3_norm_mbox_loc_flat"
|
1696 |
+
bottom: "fc7_mbox_loc_flat"
|
1697 |
+
bottom: "conv6_2_mbox_loc_flat"
|
1698 |
+
bottom: "conv7_2_mbox_loc_flat"
|
1699 |
+
bottom: "conv8_2_mbox_loc_flat"
|
1700 |
+
bottom: "conv9_2_mbox_loc_flat"
|
1701 |
+
top: "mbox_loc"
|
1702 |
+
concat_param {
|
1703 |
+
axis: 1
|
1704 |
+
}
|
1705 |
+
}
|
1706 |
+
layer {
|
1707 |
+
name: "mbox_conf"
|
1708 |
+
type: "Concat"
|
1709 |
+
bottom: "conv4_3_norm_mbox_conf_flat"
|
1710 |
+
bottom: "fc7_mbox_conf_flat"
|
1711 |
+
bottom: "conv6_2_mbox_conf_flat"
|
1712 |
+
bottom: "conv7_2_mbox_conf_flat"
|
1713 |
+
bottom: "conv8_2_mbox_conf_flat"
|
1714 |
+
bottom: "conv9_2_mbox_conf_flat"
|
1715 |
+
top: "mbox_conf"
|
1716 |
+
concat_param {
|
1717 |
+
axis: 1
|
1718 |
+
}
|
1719 |
+
}
|
1720 |
+
layer {
|
1721 |
+
name: "mbox_priorbox"
|
1722 |
+
type: "Concat"
|
1723 |
+
bottom: "conv4_3_norm_mbox_priorbox"
|
1724 |
+
bottom: "fc7_mbox_priorbox"
|
1725 |
+
bottom: "conv6_2_mbox_priorbox"
|
1726 |
+
bottom: "conv7_2_mbox_priorbox"
|
1727 |
+
bottom: "conv8_2_mbox_priorbox"
|
1728 |
+
bottom: "conv9_2_mbox_priorbox"
|
1729 |
+
top: "mbox_priorbox"
|
1730 |
+
concat_param {
|
1731 |
+
axis: 2
|
1732 |
+
}
|
1733 |
+
}
|
1734 |
+
|
1735 |
+
layer {
|
1736 |
+
name: "mbox_conf_reshape"
|
1737 |
+
type: "Reshape"
|
1738 |
+
bottom: "mbox_conf"
|
1739 |
+
top: "mbox_conf_reshape"
|
1740 |
+
reshape_param {
|
1741 |
+
shape {
|
1742 |
+
dim: 0
|
1743 |
+
dim: -1
|
1744 |
+
dim: 2
|
1745 |
+
}
|
1746 |
+
}
|
1747 |
+
}
|
1748 |
+
layer {
|
1749 |
+
name: "mbox_conf_softmax"
|
1750 |
+
type: "Softmax"
|
1751 |
+
bottom: "mbox_conf_reshape"
|
1752 |
+
top: "mbox_conf_softmax"
|
1753 |
+
softmax_param {
|
1754 |
+
axis: 2
|
1755 |
+
}
|
1756 |
+
}
|
1757 |
+
layer {
|
1758 |
+
name: "mbox_conf_flatten"
|
1759 |
+
type: "Flatten"
|
1760 |
+
bottom: "mbox_conf_softmax"
|
1761 |
+
top: "mbox_conf_flatten"
|
1762 |
+
flatten_param {
|
1763 |
+
axis: 1
|
1764 |
+
}
|
1765 |
+
}
|
1766 |
+
|
1767 |
+
layer {
|
1768 |
+
name: "detection_out"
|
1769 |
+
type: "DetectionOutput"
|
1770 |
+
bottom: "mbox_loc"
|
1771 |
+
bottom: "mbox_conf_flatten"
|
1772 |
+
bottom: "mbox_priorbox"
|
1773 |
+
top: "detection_out"
|
1774 |
+
include {
|
1775 |
+
phase: TEST
|
1776 |
+
}
|
1777 |
+
detection_output_param {
|
1778 |
+
num_classes: 2
|
1779 |
+
share_location: true
|
1780 |
+
background_label_id: 0
|
1781 |
+
nms_param {
|
1782 |
+
nms_threshold: 0.45
|
1783 |
+
top_k: 400
|
1784 |
+
}
|
1785 |
+
code_type: CENTER_SIZE
|
1786 |
+
keep_top_k: 200
|
1787 |
+
confidence_threshold: 0.01
|
1788 |
+
}
|
1789 |
+
}
|
draw_tracking_line.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import datetime
|
3 |
+
import imutils
|
4 |
+
import numpy as np
|
5 |
+
from centroidtracker import CentroidTracker
|
6 |
+
from collections import defaultdict
|
7 |
+
|
8 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
9 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
10 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
11 |
+
|
12 |
+
# Only enable it if you are using OpenVino environment
|
13 |
+
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
14 |
+
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
15 |
+
|
16 |
+
|
17 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
18 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
19 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
20 |
+
"sofa", "train", "tvmonitor"]
|
21 |
+
|
22 |
+
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
|
23 |
+
|
24 |
+
|
25 |
+
def non_max_suppression_fast(boxes, overlapThresh):
|
26 |
+
try:
|
27 |
+
if len(boxes) == 0:
|
28 |
+
return []
|
29 |
+
|
30 |
+
if boxes.dtype.kind == "i":
|
31 |
+
boxes = boxes.astype("float")
|
32 |
+
|
33 |
+
pick = []
|
34 |
+
|
35 |
+
x1 = boxes[:, 0]
|
36 |
+
y1 = boxes[:, 1]
|
37 |
+
x2 = boxes[:, 2]
|
38 |
+
y2 = boxes[:, 3]
|
39 |
+
|
40 |
+
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
41 |
+
idxs = np.argsort(y2)
|
42 |
+
|
43 |
+
while len(idxs) > 0:
|
44 |
+
last = len(idxs) - 1
|
45 |
+
i = idxs[last]
|
46 |
+
pick.append(i)
|
47 |
+
|
48 |
+
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
49 |
+
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
50 |
+
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
51 |
+
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
52 |
+
|
53 |
+
w = np.maximum(0, xx2 - xx1 + 1)
|
54 |
+
h = np.maximum(0, yy2 - yy1 + 1)
|
55 |
+
|
56 |
+
overlap = (w * h) / area[idxs[:last]]
|
57 |
+
|
58 |
+
idxs = np.delete(idxs, np.concatenate(([last],
|
59 |
+
np.where(overlap > overlapThresh)[0])))
|
60 |
+
|
61 |
+
return boxes[pick].astype("int")
|
62 |
+
except Exception as e:
|
63 |
+
print("Exception occurred in non_max_suppression : {}".format(e))
|
64 |
+
|
65 |
+
|
66 |
+
def main():
|
67 |
+
cap = cv2.VideoCapture('test_video.mp4')
|
68 |
+
|
69 |
+
fps_start_time = datetime.datetime.now()
|
70 |
+
fps = 0
|
71 |
+
total_frames = 0
|
72 |
+
centroid_dict = defaultdict(list)
|
73 |
+
object_id_list = []
|
74 |
+
|
75 |
+
while True:
|
76 |
+
ret, frame = cap.read()
|
77 |
+
frame = imutils.resize(frame, width=600)
|
78 |
+
total_frames = total_frames + 1
|
79 |
+
|
80 |
+
(H, W) = frame.shape[:2]
|
81 |
+
|
82 |
+
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
|
83 |
+
|
84 |
+
detector.setInput(blob)
|
85 |
+
person_detections = detector.forward()
|
86 |
+
rects = []
|
87 |
+
for i in np.arange(0, person_detections.shape[2]):
|
88 |
+
confidence = person_detections[0, 0, i, 2]
|
89 |
+
if confidence > 0.5:
|
90 |
+
idx = int(person_detections[0, 0, i, 1])
|
91 |
+
|
92 |
+
if CLASSES[idx] != "person":
|
93 |
+
continue
|
94 |
+
|
95 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
96 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
97 |
+
rects.append(person_box)
|
98 |
+
|
99 |
+
boundingboxes = np.array(rects)
|
100 |
+
boundingboxes = boundingboxes.astype(int)
|
101 |
+
rects = non_max_suppression_fast(boundingboxes, 0.3)
|
102 |
+
|
103 |
+
objects = tracker.update(rects)
|
104 |
+
for (objectId, bbox) in objects.items():
|
105 |
+
x1, y1, x2, y2 = bbox
|
106 |
+
x1 = int(x1)
|
107 |
+
y1 = int(y1)
|
108 |
+
x2 = int(x2)
|
109 |
+
y2 = int(y2)
|
110 |
+
|
111 |
+
cX = int((x1 + x2) / 2.0)
|
112 |
+
cY = int((y1 + y2) / 2.0)
|
113 |
+
cv2.circle(frame, (cX, cY), 4, (0, 255, 0), -1)
|
114 |
+
|
115 |
+
centroid_dict[objectId].append((cX, cY))
|
116 |
+
if objectId not in object_id_list:
|
117 |
+
object_id_list.append(objectId)
|
118 |
+
start_pt = (cX, cY)
|
119 |
+
end_pt = (cX, cY)
|
120 |
+
cv2.line(frame, start_pt, end_pt, (0, 255, 0), 2)
|
121 |
+
else:
|
122 |
+
l = len(centroid_dict[objectId])
|
123 |
+
for pt in range(len(centroid_dict[objectId])):
|
124 |
+
if not pt + 1 == l:
|
125 |
+
start_pt = (centroid_dict[objectId][pt][0], centroid_dict[objectId][pt][1])
|
126 |
+
end_pt = (centroid_dict[objectId][pt + 1][0], centroid_dict[objectId][pt + 1][1])
|
127 |
+
cv2.line(frame, start_pt, end_pt, (0, 255, 0), 2)
|
128 |
+
|
129 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
130 |
+
text = "ID: {}".format(objectId)
|
131 |
+
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
132 |
+
|
133 |
+
fps_end_time = datetime.datetime.now()
|
134 |
+
time_diff = fps_end_time - fps_start_time
|
135 |
+
if time_diff.seconds == 0:
|
136 |
+
fps = 0.0
|
137 |
+
else:
|
138 |
+
fps = (total_frames / time_diff.seconds)
|
139 |
+
|
140 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
141 |
+
|
142 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
143 |
+
|
144 |
+
cv2.imshow("Application", frame)
|
145 |
+
key = cv2.waitKey(1)
|
146 |
+
if key == ord('q'):
|
147 |
+
break
|
148 |
+
|
149 |
+
cv2.destroyAllWindows()
|
150 |
+
|
151 |
+
|
152 |
+
main()
|
dwell_time_calculation.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import datetime
|
3 |
+
import imutils
|
4 |
+
import numpy as np
|
5 |
+
from centroidtracker import CentroidTracker
|
6 |
+
|
7 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
8 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
9 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
10 |
+
# Only enable it if you are using OpenVino environment
|
11 |
+
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
12 |
+
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
13 |
+
|
14 |
+
|
15 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
16 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
17 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
18 |
+
"sofa", "train", "tvmonitor"]
|
19 |
+
|
20 |
+
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
|
21 |
+
|
22 |
+
|
23 |
+
def non_max_suppression_fast(boxes, overlapThresh):
|
24 |
+
try:
|
25 |
+
if len(boxes) == 0:
|
26 |
+
return []
|
27 |
+
|
28 |
+
if boxes.dtype.kind == "i":
|
29 |
+
boxes = boxes.astype("float")
|
30 |
+
|
31 |
+
pick = []
|
32 |
+
|
33 |
+
x1 = boxes[:, 0]
|
34 |
+
y1 = boxes[:, 1]
|
35 |
+
x2 = boxes[:, 2]
|
36 |
+
y2 = boxes[:, 3]
|
37 |
+
|
38 |
+
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
39 |
+
idxs = np.argsort(y2)
|
40 |
+
|
41 |
+
while len(idxs) > 0:
|
42 |
+
last = len(idxs) - 1
|
43 |
+
i = idxs[last]
|
44 |
+
pick.append(i)
|
45 |
+
|
46 |
+
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
47 |
+
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
48 |
+
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
49 |
+
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
50 |
+
|
51 |
+
w = np.maximum(0, xx2 - xx1 + 1)
|
52 |
+
h = np.maximum(0, yy2 - yy1 + 1)
|
53 |
+
|
54 |
+
overlap = (w * h) / area[idxs[:last]]
|
55 |
+
|
56 |
+
idxs = np.delete(idxs, np.concatenate(([last],
|
57 |
+
np.where(overlap > overlapThresh)[0])))
|
58 |
+
|
59 |
+
return boxes[pick].astype("int")
|
60 |
+
except Exception as e:
|
61 |
+
print("Exception occurred in non_max_suppression : {}".format(e))
|
62 |
+
|
63 |
+
|
64 |
+
def main():
|
65 |
+
cap = cv2.VideoCapture('test_video.mp4')
|
66 |
+
|
67 |
+
fps_start_time = datetime.datetime.now()
|
68 |
+
fps = 0
|
69 |
+
total_frames = 0
|
70 |
+
|
71 |
+
object_id_list = []
|
72 |
+
dtime = dict()
|
73 |
+
dwell_time = dict()
|
74 |
+
|
75 |
+
while True:
|
76 |
+
ret, frame = cap.read()
|
77 |
+
frame = imutils.resize(frame, width=600)
|
78 |
+
total_frames = total_frames + 1
|
79 |
+
|
80 |
+
(H, W) = frame.shape[:2]
|
81 |
+
|
82 |
+
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
|
83 |
+
|
84 |
+
detector.setInput(blob)
|
85 |
+
person_detections = detector.forward()
|
86 |
+
rects = []
|
87 |
+
for i in np.arange(0, person_detections.shape[2]):
|
88 |
+
confidence = person_detections[0, 0, i, 2]
|
89 |
+
if confidence > 0.5:
|
90 |
+
idx = int(person_detections[0, 0, i, 1])
|
91 |
+
|
92 |
+
if CLASSES[idx] != "person":
|
93 |
+
continue
|
94 |
+
|
95 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
96 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
97 |
+
rects.append(person_box)
|
98 |
+
|
99 |
+
boundingboxes = np.array(rects)
|
100 |
+
boundingboxes = boundingboxes.astype(int)
|
101 |
+
rects = non_max_suppression_fast(boundingboxes, 0.3)
|
102 |
+
|
103 |
+
objects = tracker.update(rects)
|
104 |
+
for (objectId, bbox) in objects.items():
|
105 |
+
x1, y1, x2, y2 = bbox
|
106 |
+
x1 = int(x1)
|
107 |
+
y1 = int(y1)
|
108 |
+
x2 = int(x2)
|
109 |
+
y2 = int(y2)
|
110 |
+
|
111 |
+
if objectId not in object_id_list:
|
112 |
+
object_id_list.append(objectId)
|
113 |
+
dtime[objectId] = datetime.datetime.now()
|
114 |
+
dwell_time[objectId] = 0
|
115 |
+
else:
|
116 |
+
curr_time = datetime.datetime.now()
|
117 |
+
old_time = dtime[objectId]
|
118 |
+
time_diff = curr_time - old_time
|
119 |
+
dtime[objectId] = datetime.datetime.now()
|
120 |
+
sec = time_diff.total_seconds()
|
121 |
+
dwell_time[objectId] += sec
|
122 |
+
|
123 |
+
|
124 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
125 |
+
text = "{}|{}".format(objectId, int(dwell_time[objectId]))
|
126 |
+
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
127 |
+
|
128 |
+
fps_end_time = datetime.datetime.now()
|
129 |
+
time_diff = fps_end_time - fps_start_time
|
130 |
+
if time_diff.seconds == 0:
|
131 |
+
fps = 0.0
|
132 |
+
else:
|
133 |
+
fps = (total_frames / time_diff.seconds)
|
134 |
+
|
135 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
136 |
+
|
137 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
138 |
+
|
139 |
+
cv2.imshow("Application", frame)
|
140 |
+
key = cv2.waitKey(1)
|
141 |
+
if key == ord('q'):
|
142 |
+
break
|
143 |
+
|
144 |
+
cv2.destroyAllWindows()
|
145 |
+
|
146 |
+
|
147 |
+
main()
|
eg.py
ADDED
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import streamlit as st
|
2 |
+
# import pandas as pd
|
3 |
+
|
4 |
+
|
5 |
+
# # Security
|
6 |
+
# #passlib,hashlib,bcrypt,scrypt
|
7 |
+
# import hashlib
|
8 |
+
# def make_hashes(password):
|
9 |
+
# return hashlib.sha256(str.encode(password)).hexdigest()
|
10 |
+
|
11 |
+
# def check_hashes(password,hashed_text):
|
12 |
+
# if make_hashes(password) == hashed_text:
|
13 |
+
# return hashed_text
|
14 |
+
# return False
|
15 |
+
# # DB Management
|
16 |
+
# import sqlite3
|
17 |
+
# conn = sqlite3.connect('data.db')
|
18 |
+
# c = conn.cursor()
|
19 |
+
# # DB Functions
|
20 |
+
# def create_usertable():
|
21 |
+
# c.execute('CREATE TABLE IF NOT EXISTS userstable(username TEXT,password TEXT)')
|
22 |
+
|
23 |
+
|
24 |
+
# def add_userdata(username,password):
|
25 |
+
# c.execute('INSERT INTO userstable(username,password) VALUES (?,?)',(username,password))
|
26 |
+
# conn.commit()
|
27 |
+
|
28 |
+
# def login_user(username,password):
|
29 |
+
# c.execute('SELECT * FROM userstable WHERE username =? AND password = ?',(username,password))
|
30 |
+
# data = c.fetchall()
|
31 |
+
# return data
|
32 |
+
|
33 |
+
|
34 |
+
# def view_all_users():
|
35 |
+
# c.execute('SELECT * FROM userstable')
|
36 |
+
# data = c.fetchall()
|
37 |
+
# return data
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
# def main():
|
42 |
+
# """Simple Login App"""
|
43 |
+
|
44 |
+
# st.title("Simple Login App")
|
45 |
+
|
46 |
+
# menu = ["Home","Login","SignUp"]
|
47 |
+
# choice = st.sidebar.selectbox("Menu",menu)
|
48 |
+
|
49 |
+
# if choice == "Home":
|
50 |
+
# st.subheader("Home")
|
51 |
+
|
52 |
+
# elif choice == "Login":
|
53 |
+
# st.subheader("Login Section")
|
54 |
+
|
55 |
+
# username = st.sidebar.text_input("User Name")
|
56 |
+
# password = st.sidebar.text_input("Password",type='password')
|
57 |
+
# if st.sidebar.checkbox("Login"):
|
58 |
+
# # if password == '12345':
|
59 |
+
# create_usertable()
|
60 |
+
# hashed_pswd = make_hashes(password)
|
61 |
+
|
62 |
+
# result = login_user(username,check_hashes(password,hashed_pswd))
|
63 |
+
# if result:
|
64 |
+
|
65 |
+
# st.success("Logged In as {}".format(username))
|
66 |
+
|
67 |
+
# task = st.selectbox("Task",["Add Post","Analytics","Profiles"])
|
68 |
+
# if task == "Add Post":
|
69 |
+
# st.subheader("Add Your Post")
|
70 |
+
|
71 |
+
# elif task == "Analytics":
|
72 |
+
# st.subheader("Analytics")
|
73 |
+
# elif task == "Profiles":
|
74 |
+
# st.subheader("User Profiles")
|
75 |
+
# user_result = view_all_users()
|
76 |
+
# clean_db = pd.DataFrame(user_result,columns=["Username","Password"])
|
77 |
+
# st.dataframe(clean_db)
|
78 |
+
# else:
|
79 |
+
# st.warning("Incorrect Username/Password")
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
# elif choice == "SignUp":
|
86 |
+
# st.subheader("Create New Account")
|
87 |
+
# new_user = st.text_input("Username")
|
88 |
+
# new_password = st.text_input("Password",type='password')
|
89 |
+
|
90 |
+
# if st.button("Signup"):
|
91 |
+
# create_usertable()
|
92 |
+
# add_userdata(new_user,make_hashes(new_password))
|
93 |
+
# st.success("You have successfully created a valid Account")
|
94 |
+
# st.info("Go to Login Menu to login")
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
# if __name__ == '__main__':
|
99 |
+
# main()
|
100 |
+
|
101 |
+
|
102 |
+
import cv2
|
103 |
+
import datetime
|
104 |
+
import imutils
|
105 |
+
import numpy as np
|
106 |
+
from centroidtracker import CentroidTracker
|
107 |
+
import pandas as pd
|
108 |
+
import torch
|
109 |
+
import streamlit as st
|
110 |
+
import mediapipe as mp
|
111 |
+
import cv2 as cv
|
112 |
+
import numpy as np
|
113 |
+
import tempfile
|
114 |
+
import time
|
115 |
+
from PIL import Image
|
116 |
+
import pandas as pd
|
117 |
+
import torch
|
118 |
+
import base64
|
119 |
+
import streamlit.components.v1 as components
|
120 |
+
import csv
|
121 |
+
import pickle
|
122 |
+
from pathlib import Path
|
123 |
+
import streamlit_authenticator as stauth
|
124 |
+
import os
|
125 |
+
import csv
|
126 |
+
# x-x-x-x-x-x-x-x-x-x-x-x-x-x LOGIN FORM x-x-x-x-x-x-x-x-x
|
127 |
+
|
128 |
+
|
129 |
+
data = ["student Count",'Date','Id','Mobile','Watch']
|
130 |
+
with open('final.csv', 'w') as file:
|
131 |
+
writer = csv.writer(file)
|
132 |
+
writer.writerow(data)
|
133 |
+
import streamlit as st
|
134 |
+
import pandas as pd
|
135 |
+
import hashlib
|
136 |
+
import sqlite3
|
137 |
+
# if st.button("Open CRM !!"):
|
138 |
+
|
139 |
+
# # Security
|
140 |
+
# #passlib,hashlib,bcrypt,scrypt
|
141 |
+
# def make_hashes(password):
|
142 |
+
# return hashlib.sha256(str.encode(password)).hexdigest()
|
143 |
+
|
144 |
+
# def check_hashes(password,hashed_text):
|
145 |
+
# if make_hashes(password) == hashed_text:
|
146 |
+
# return hashed_text
|
147 |
+
# return False
|
148 |
+
# # DB Management
|
149 |
+
|
150 |
+
# conn = sqlite3.connect('data.db')
|
151 |
+
# c = conn.cursor()
|
152 |
+
# # DB Functions
|
153 |
+
# def create_usertable():
|
154 |
+
# c.execute('CREATE TABLE IF NOT EXISTS userstable(username TEXT,password TEXT)')
|
155 |
+
|
156 |
+
|
157 |
+
# def add_userdata(username,password):
|
158 |
+
# c.execute('INSERT INTO userstable(username,password) VALUES (?,?)',(username,password))
|
159 |
+
# conn.commit()
|
160 |
+
|
161 |
+
# def login_user(username,password):
|
162 |
+
# c.execute('SELECT * FROM userstable WHERE username =? AND password = ?',(username,password))
|
163 |
+
# data = c.fetchall()
|
164 |
+
# return data
|
165 |
+
|
166 |
+
|
167 |
+
# def view_all_users():
|
168 |
+
# c.execute('SELECT * FROM userstable')
|
169 |
+
# data = c.fetchall()
|
170 |
+
# return data
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
# def main():
|
175 |
+
# """Simple Login App"""
|
176 |
+
|
177 |
+
# st.title("Simple Login App")
|
178 |
+
|
179 |
+
# menu = ["Home","Login","SignUp"]
|
180 |
+
# choice = st.sidebar.selectbox("Menu",menu)
|
181 |
+
|
182 |
+
# if choice == "Home":
|
183 |
+
# st.subheader("Home")
|
184 |
+
|
185 |
+
# elif choice == "Login":
|
186 |
+
# st.subheader("Login Section")
|
187 |
+
|
188 |
+
# username = st.sidebar.text_input("User Name")
|
189 |
+
# password = st.sidebar.text_input("Password",type='password')
|
190 |
+
# if st.sidebar.checkbox("Login"):
|
191 |
+
# # if password == '12345':
|
192 |
+
# create_usertable()
|
193 |
+
# hashed_pswd = make_hashes(password)
|
194 |
+
|
195 |
+
# result = login_user(username,check_hashes(password,hashed_pswd))
|
196 |
+
# if result:
|
197 |
+
|
198 |
+
# st.success("Logged In as {}".format(username))
|
199 |
+
|
200 |
+
# # task = st.selectbox("Task",["Add Post","Analytics","Profiles"])
|
201 |
+
# # if task == "Add Post":
|
202 |
+
# # st.subheader("Add Your Post")
|
203 |
+
|
204 |
+
# # elif task == "Analytics":
|
205 |
+
# # st.subheader("Analytics")
|
206 |
+
# # elif task == "Profiles":
|
207 |
+
# # st.subheader("User Profiles")
|
208 |
+
# # user_result = view_all_users()
|
209 |
+
# # clean_db = pd.DataFrame(user_result,columns=["Username","Password"])
|
210 |
+
# # st.dataframe(clean_db)
|
211 |
+
# else:
|
212 |
+
# st.warning("Incorrect Username/Password")
|
213 |
+
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
|
218 |
+
# elif choice == "SignUp":
|
219 |
+
# st.subheader("Create New Account")
|
220 |
+
# new_user = st.text_input("Username")
|
221 |
+
# new_password = st.text_input("Password",type='password')
|
222 |
+
|
223 |
+
# if st.button("Signup"):
|
224 |
+
# create_usertable()
|
225 |
+
# add_userdata(new_user,make_hashes(new_password))
|
226 |
+
# st.success("You have successfully created a valid Account")
|
227 |
+
# st.info("Go to Login Menu to login")
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
# if __name__ == '__main__':
|
232 |
+
# main()
|
233 |
+
|
234 |
+
|
235 |
+
|
236 |
+
date_time = time.strftime("%b %d %Y %-I:%M %p")
|
237 |
+
date = date_time.split()
|
238 |
+
dates = date[0:3]
|
239 |
+
times = date[3:5]
|
240 |
+
# x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xAPPLICACTION -x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
|
241 |
+
|
242 |
+
def non_max_suppression_fast(boxes, overlapThresh):
|
243 |
+
try:
|
244 |
+
if len(boxes) == 0:
|
245 |
+
return []
|
246 |
+
|
247 |
+
if boxes.dtype.kind == "i":
|
248 |
+
boxes = boxes.astype("float")
|
249 |
+
|
250 |
+
pick = []
|
251 |
+
|
252 |
+
x1 = boxes[:, 0]
|
253 |
+
y1 = boxes[:, 1]
|
254 |
+
x2 = boxes[:, 2]
|
255 |
+
y2 = boxes[:, 3]
|
256 |
+
|
257 |
+
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
258 |
+
idxs = np.argsort(y2)
|
259 |
+
|
260 |
+
while len(idxs) > 0:
|
261 |
+
last = len(idxs) - 1
|
262 |
+
i = idxs[last]
|
263 |
+
pick.append(i)
|
264 |
+
|
265 |
+
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
266 |
+
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
267 |
+
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
268 |
+
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
269 |
+
|
270 |
+
w = np.maximum(0, xx2 - xx1 + 1)
|
271 |
+
h = np.maximum(0, yy2 - yy1 + 1)
|
272 |
+
|
273 |
+
overlap = (w * h) / area[idxs[:last]]
|
274 |
+
|
275 |
+
idxs = np.delete(idxs, np.concatenate(([last],
|
276 |
+
np.where(overlap > overlapThresh)[0])))
|
277 |
+
|
278 |
+
return boxes[pick].astype("int")
|
279 |
+
except Exception as e:
|
280 |
+
print("Exception occurred in non_max_suppression : {}".format(e))
|
281 |
+
|
282 |
+
|
283 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
284 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
285 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
286 |
+
# Only enable it if you are using OpenVino environment
|
287 |
+
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
288 |
+
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
289 |
+
|
290 |
+
|
291 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
292 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
293 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
294 |
+
"sofa", "train", "tvmonitor"]
|
295 |
+
|
296 |
+
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
|
297 |
+
|
298 |
+
st.markdown(
|
299 |
+
"""
|
300 |
+
<style>
|
301 |
+
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
|
302 |
+
width: 350px
|
303 |
+
}
|
304 |
+
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
|
305 |
+
width: 350px
|
306 |
+
margin-left: -350px
|
307 |
+
}
|
308 |
+
</style>
|
309 |
+
""",
|
310 |
+
unsafe_allow_html=True,
|
311 |
+
)
|
312 |
+
hide_streamlit_style = """
|
313 |
+
<style>
|
314 |
+
#MainMenu {visibility: hidden;}
|
315 |
+
footer {visibility: hidden;}
|
316 |
+
</style>
|
317 |
+
"""
|
318 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
319 |
+
# Create Sidebar
|
320 |
+
st.sidebar.title('FaceMesh Sidebar')
|
321 |
+
st.sidebar.subheader('Parameter')
|
322 |
+
|
323 |
+
# Define available pages in selection box
|
324 |
+
app_mode = st.sidebar.selectbox(
|
325 |
+
'App Mode',
|
326 |
+
['About','Application']
|
327 |
+
)
|
328 |
+
|
329 |
+
# Resize Images to fit Container
|
330 |
+
@st.cache()
|
331 |
+
# Get Image Dimensions
|
332 |
+
def image_resize(image, width=None, height=None, inter=cv.INTER_AREA):
|
333 |
+
dim = None
|
334 |
+
(h,w) = image.shape[:2]
|
335 |
+
|
336 |
+
if width is None and height is None:
|
337 |
+
return image
|
338 |
+
|
339 |
+
if width is None:
|
340 |
+
r = width/float(w)
|
341 |
+
dim = (int(w*r),height)
|
342 |
+
|
343 |
+
else:
|
344 |
+
r = width/float(w)
|
345 |
+
dim = width, int(h*r)
|
346 |
+
|
347 |
+
# Resize image
|
348 |
+
resized = cv.resize(image,dim,interpolation=inter)
|
349 |
+
|
350 |
+
return resized
|
351 |
+
|
352 |
+
# About Page
|
353 |
+
# authenticator.logout('Logout','sidebar')
|
354 |
+
if app_mode == 'About':
|
355 |
+
st.title('About Product And Team')
|
356 |
+
st.markdown('''
|
357 |
+
Imran Bhai Project
|
358 |
+
''')
|
359 |
+
st.markdown(
|
360 |
+
"""
|
361 |
+
<style>
|
362 |
+
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
|
363 |
+
width: 350px
|
364 |
+
}
|
365 |
+
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
|
366 |
+
width: 350px
|
367 |
+
margin-left: -350px
|
368 |
+
}
|
369 |
+
</style>
|
370 |
+
""",
|
371 |
+
unsafe_allow_html=True,
|
372 |
+
)
|
373 |
+
|
374 |
+
|
375 |
+
|
376 |
+
|
377 |
+
elif app_mode == 'Application':
|
378 |
+
|
379 |
+
st.set_option('deprecation.showfileUploaderEncoding', False)
|
380 |
+
|
381 |
+
use_webcam = st.button('Use Webcam')
|
382 |
+
# record = st.sidebar.checkbox("Record Video")
|
383 |
+
|
384 |
+
# if record:
|
385 |
+
# st.checkbox('Recording', True)
|
386 |
+
|
387 |
+
# drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
|
388 |
+
|
389 |
+
# st.sidebar.markdown('---')
|
390 |
+
|
391 |
+
# ## Add Sidebar and Window style
|
392 |
+
# st.markdown(
|
393 |
+
# """
|
394 |
+
# <style>
|
395 |
+
# [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
|
396 |
+
# width: 350px
|
397 |
+
# }
|
398 |
+
# [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
|
399 |
+
# width: 350px
|
400 |
+
# margin-left: -350px
|
401 |
+
# }
|
402 |
+
# </style>
|
403 |
+
# """,
|
404 |
+
# unsafe_allow_html=True,
|
405 |
+
# )
|
406 |
+
|
407 |
+
# max_faces = st.sidebar.number_input('Maximum Number of Faces', value=5, min_value=1)
|
408 |
+
# st.sidebar.markdown('---')
|
409 |
+
# detection_confidence = st.sidebar.slider('Min Detection Confidence', min_value=0.0,max_value=1.0,value=0.5)
|
410 |
+
# tracking_confidence = st.sidebar.slider('Min Tracking Confidence', min_value=0.0,max_value=1.0,value=0.5)
|
411 |
+
# st.sidebar.markdown('---')
|
412 |
+
|
413 |
+
## Get Video
|
414 |
+
stframe = st.empty()
|
415 |
+
video_file_buffer = st.file_uploader("Upload a Video", type=['mp4', 'mov', 'avi', 'asf', 'm4v'])
|
416 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
417 |
+
|
418 |
+
|
419 |
+
if not video_file_buffer:
|
420 |
+
if use_webcam:
|
421 |
+
video = cv.VideoCapture(0)
|
422 |
+
else:
|
423 |
+
try:
|
424 |
+
video = cv.VideoCapture(1)
|
425 |
+
temp_file.name = video
|
426 |
+
except:
|
427 |
+
pass
|
428 |
+
else:
|
429 |
+
temp_file.write(video_file_buffer.read())
|
430 |
+
video = cv.VideoCapture(temp_file.name)
|
431 |
+
|
432 |
+
width = int(video.get(cv.CAP_PROP_FRAME_WIDTH))
|
433 |
+
height = int(video.get(cv.CAP_PROP_FRAME_HEIGHT))
|
434 |
+
fps_input = int(video.get(cv.CAP_PROP_FPS))
|
435 |
+
|
436 |
+
## Recording
|
437 |
+
codec = cv.VideoWriter_fourcc('a','v','c','1')
|
438 |
+
out = cv.VideoWriter('output1.mp4', codec, fps_input, (width,height))
|
439 |
+
|
440 |
+
st.sidebar.text('Input Video')
|
441 |
+
# st.sidebar.video(temp_file.name)
|
442 |
+
|
443 |
+
fps = 0
|
444 |
+
i = 0
|
445 |
+
|
446 |
+
drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
|
447 |
+
|
448 |
+
kpil, kpil2, kpil3,kpil4,kpil5, kpil6 = st.columns(6)
|
449 |
+
|
450 |
+
with kpil:
|
451 |
+
st.markdown('**Frame Rate**')
|
452 |
+
kpil_text = st.markdown('0')
|
453 |
+
|
454 |
+
with kpil2:
|
455 |
+
st.markdown('**detection ID**')
|
456 |
+
kpil2_text = st.markdown('0')
|
457 |
+
|
458 |
+
with kpil3:
|
459 |
+
st.markdown('**Mobile**')
|
460 |
+
kpil3_text = st.markdown('0')
|
461 |
+
with kpil4:
|
462 |
+
st.markdown('**Watch**')
|
463 |
+
kpil4_text = st.markdown('0')
|
464 |
+
with kpil5:
|
465 |
+
st.markdown('**Count**')
|
466 |
+
kpil5_text = st.markdown('0')
|
467 |
+
with kpil6:
|
468 |
+
st.markdown('**Img Res**')
|
469 |
+
kpil6_text = st.markdown('0')
|
470 |
+
|
471 |
+
|
472 |
+
|
473 |
+
st.markdown('<hr/>', unsafe_allow_html=True)
|
474 |
+
# try:
|
475 |
+
def main():
|
476 |
+
db = {}
|
477 |
+
|
478 |
+
# cap = cv2.VideoCapture('//home//anas//PersonTracking//WebUI//movement.mp4')
|
479 |
+
path='/usr/local/lib/python3.10/dist-packages/yolo0vs5/yolov5s-int8.tflite'
|
480 |
+
#count=0
|
481 |
+
custom = 'yolov5s'
|
482 |
+
|
483 |
+
model = torch.hub.load('/usr/local/lib/python3.10/dist-packages/yolovs5', custom, path,source='local',force_reload=True)
|
484 |
+
|
485 |
+
b=model.names[0] = 'person'
|
486 |
+
mobile = model.names[67] = 'cell phone'
|
487 |
+
watch = model.names[75] = 'clock'
|
488 |
+
|
489 |
+
fps_start_time = datetime.datetime.now()
|
490 |
+
fps = 0
|
491 |
+
size=416
|
492 |
+
|
493 |
+
count=0
|
494 |
+
counter=0
|
495 |
+
|
496 |
+
|
497 |
+
color=(0,0,255)
|
498 |
+
|
499 |
+
cy1=250
|
500 |
+
offset=6
|
501 |
+
|
502 |
+
|
503 |
+
pt1 = (120, 100)
|
504 |
+
pt2 = (980, 1150)
|
505 |
+
color = (0, 255, 0)
|
506 |
+
|
507 |
+
pt3 = (283, 103)
|
508 |
+
pt4 = (1500, 1150)
|
509 |
+
|
510 |
+
cy2 = 500
|
511 |
+
color = (0, 255, 0)
|
512 |
+
total_frames = 0
|
513 |
+
prevTime = 0
|
514 |
+
cur_frame = 0
|
515 |
+
count=0
|
516 |
+
counter=0
|
517 |
+
fps_start_time = datetime.datetime.now()
|
518 |
+
fps = 0
|
519 |
+
total_frames = 0
|
520 |
+
lpc_count = 0
|
521 |
+
opc_count = 0
|
522 |
+
object_id_list = []
|
523 |
+
# success = True
|
524 |
+
if st.button("Detect"):
|
525 |
+
try:
|
526 |
+
while video.isOpened():
|
527 |
+
|
528 |
+
ret, frame = video.read()
|
529 |
+
frame = imutils.resize(frame, width=600)
|
530 |
+
total_frames = total_frames + 1
|
531 |
+
|
532 |
+
(H, W) = frame.shape[:2]
|
533 |
+
|
534 |
+
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
|
535 |
+
|
536 |
+
detector.setInput(blob)
|
537 |
+
person_detections = detector.forward()
|
538 |
+
rects = []
|
539 |
+
for i in np.arange(0, person_detections.shape[2]):
|
540 |
+
confidence = person_detections[0, 0, i, 2]
|
541 |
+
if confidence > 0.5:
|
542 |
+
idx = int(person_detections[0, 0, i, 1])
|
543 |
+
|
544 |
+
if CLASSES[idx] != "person":
|
545 |
+
continue
|
546 |
+
|
547 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
548 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
549 |
+
rects.append(person_box)
|
550 |
+
|
551 |
+
boundingboxes = np.array(rects)
|
552 |
+
boundingboxes = boundingboxes.astype(int)
|
553 |
+
rects = non_max_suppression_fast(boundingboxes, 0.3)
|
554 |
+
|
555 |
+
objects = tracker.update(rects)
|
556 |
+
for (objectId, bbox) in objects.items():
|
557 |
+
x1, y1, x2, y2 = bbox
|
558 |
+
x1 = int(x1)
|
559 |
+
y1 = int(y1)
|
560 |
+
x2 = int(x2)
|
561 |
+
y2 = int(y2)
|
562 |
+
|
563 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
564 |
+
text = "ID: {}".format(objectId)
|
565 |
+
# print(text)
|
566 |
+
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
567 |
+
if objectId not in object_id_list:
|
568 |
+
object_id_list.append(objectId)
|
569 |
+
fps_end_time = datetime.datetime.now()
|
570 |
+
time_diff = fps_end_time - fps_start_time
|
571 |
+
if time_diff.seconds == 0:
|
572 |
+
fps = 0.0
|
573 |
+
else:
|
574 |
+
fps = (total_frames / time_diff.seconds)
|
575 |
+
|
576 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
577 |
+
|
578 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
579 |
+
lpc_count = len(objects)
|
580 |
+
opc_count = len(object_id_list)
|
581 |
+
|
582 |
+
lpc_txt = "LPC: {}".format(lpc_count)
|
583 |
+
opc_txt = "OPC: {}".format(opc_count)
|
584 |
+
|
585 |
+
count += 1
|
586 |
+
if count % 4 != 0:
|
587 |
+
continue
|
588 |
+
# frame=cv.resize(frame, (600,500))
|
589 |
+
# cv2.line(frame, pt1, pt2,color,2)
|
590 |
+
# cv2.line(frame, pt3, pt4,color,2)
|
591 |
+
results = model(frame,size)
|
592 |
+
components = results.pandas().xyxy[0]
|
593 |
+
for index, row in results.pandas().xyxy[0].iterrows():
|
594 |
+
x1 = int(row['xmin'])
|
595 |
+
y1 = int(row['ymin'])
|
596 |
+
x2 = int(row['xmax'])
|
597 |
+
y2 = int(row['ymax'])
|
598 |
+
confidence = (row['confidence'])
|
599 |
+
obj = (row['class'])
|
600 |
+
|
601 |
+
|
602 |
+
# min':x1,'ymin':y1,'xmax':x2,'ymax':y2,'confidence':confidence,'Object':obj}
|
603 |
+
# if lpc_txt is not None:
|
604 |
+
# try:
|
605 |
+
# db["student Count"] = [lpc_txt]
|
606 |
+
# except:
|
607 |
+
# db["student Count"] = ['N/A']
|
608 |
+
if obj == 0:
|
609 |
+
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
610 |
+
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
|
611 |
+
rectcenter = int(rectx1),int(recty1)
|
612 |
+
cx = rectcenter[0]
|
613 |
+
cy = rectcenter[1]
|
614 |
+
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
|
615 |
+
cv2.putText(frame,str(b), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
|
616 |
+
|
617 |
+
db["student Count"] = [lpc_txt]
|
618 |
+
db['Date'] = [date_time]
|
619 |
+
db['id'] = ['N/A']
|
620 |
+
db['Mobile']=['N/A']
|
621 |
+
db['Watch'] = ['N/A']
|
622 |
+
if cy<(cy1+offset) and cy>(cy1-offset):
|
623 |
+
DB = []
|
624 |
+
counter+=1
|
625 |
+
DB.append(counter)
|
626 |
+
|
627 |
+
ff = DB[-1]
|
628 |
+
fx = str(ff)
|
629 |
+
# cv2.line(frame, pt1, pt2,(0, 0, 255),2)
|
630 |
+
# if cy<(cy2+offset) and cy>(cy2-offset):
|
631 |
+
|
632 |
+
# cv2.line(frame, pt3, pt4,(0, 0, 255),2)
|
633 |
+
font = cv2.FONT_HERSHEY_TRIPLEX
|
634 |
+
cv2.putText(frame,fx,(50, 50),font, 1,(0, 0, 255),2,cv2.LINE_4)
|
635 |
+
cv2.putText(frame,"Movement",(70, 70),font, 1,(0, 0, 255),2,cv2.LINE_4)
|
636 |
+
kpil2_text.write(f"<h5 style='text-align: left; color:red;'>{text}</h5>", unsafe_allow_html=True)
|
637 |
+
|
638 |
+
|
639 |
+
db['id'] = [text]
|
640 |
+
|
641 |
+
|
642 |
+
|
643 |
+
if obj == 67:
|
644 |
+
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
645 |
+
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
|
646 |
+
rectcenter = int(rectx1),int(recty1)
|
647 |
+
cx = rectcenter[0]
|
648 |
+
cy = rectcenter[1]
|
649 |
+
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
|
650 |
+
cv2.putText(frame,str(mobile), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
|
651 |
+
cv2.putText(frame,'Mobile',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
|
652 |
+
kpil3_text.write(f"<h5 style='text-align: left; color:red;'>{mobile}{text}</h5>", unsafe_allow_html=True)
|
653 |
+
|
654 |
+
db['Mobile']=mobile+' '+text
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
if obj == 75:
|
659 |
+
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
660 |
+
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
|
661 |
+
rectcenter = int(rectx1),int(recty1)
|
662 |
+
cx = rectcenter[0]
|
663 |
+
cy = rectcenter[1]
|
664 |
+
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
|
665 |
+
cv2.putText(frame,str(watch), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
|
666 |
+
cv2.putText(frame,'Watch',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
|
667 |
+
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{watch}</h5>", unsafe_allow_html=True)
|
668 |
+
|
669 |
+
|
670 |
+
db['Watch']=watch
|
671 |
+
|
672 |
+
|
673 |
+
|
674 |
+
kpil_text.write(f"<h5 style='text-align: left; color:red;'>{int(fps)}</h5>", unsafe_allow_html=True)
|
675 |
+
kpil5_text.write(f"<h5 style='text-align: left; color:red;'>{lpc_txt}</h5>", unsafe_allow_html=True)
|
676 |
+
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{width*height}</h5>",
|
677 |
+
unsafe_allow_html=True)
|
678 |
+
|
679 |
+
|
680 |
+
frame = cv.resize(frame,(0,0), fx=0.8, fy=0.8)
|
681 |
+
frame = image_resize(image=frame, width=640)
|
682 |
+
stframe.image(frame,channels='BGR', use_column_width=True)
|
683 |
+
df = pd.DataFrame(db)
|
684 |
+
df.to_csv('final.csv',mode='a',header=False,index=False)
|
685 |
+
except:
|
686 |
+
pass
|
687 |
+
with open('final.csv') as f:
|
688 |
+
st.download_button(label = 'Download Cheating Report',data=f,file_name='data.csv')
|
689 |
+
|
690 |
+
os.remove("final.csv")
|
691 |
+
main()
|
face_detections.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import datetime
|
3 |
+
import imutils
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
protopath = "deploy.prototxt"
|
7 |
+
modelpath = "res10_300x300_ssd_iter_140000.caffemodel"
|
8 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
9 |
+
# Only enable it if you are using OpenVino environment
|
10 |
+
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
11 |
+
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
12 |
+
|
13 |
+
def main():
|
14 |
+
cap = cv2.VideoCapture('test_video.mp4')
|
15 |
+
|
16 |
+
fps_start_time = datetime.datetime.now()
|
17 |
+
fps = 0
|
18 |
+
total_frames = 0
|
19 |
+
|
20 |
+
while True:
|
21 |
+
ret, frame = cap.read()
|
22 |
+
frame = imutils.resize(frame, width=600)
|
23 |
+
total_frames = total_frames + 1
|
24 |
+
|
25 |
+
(H, W) = frame.shape[:2]
|
26 |
+
|
27 |
+
face_blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0), False, False)
|
28 |
+
|
29 |
+
detector.setInput(face_blob)
|
30 |
+
face_detections = detector.forward()
|
31 |
+
|
32 |
+
for i in np.arange(0, face_detections.shape[2]):
|
33 |
+
confidence = face_detections[0, 0, i, 2]
|
34 |
+
if confidence > 0.5:
|
35 |
+
|
36 |
+
face_box = face_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
37 |
+
(startX, startY, endX, endY) = face_box.astype("int")
|
38 |
+
|
39 |
+
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2)
|
40 |
+
|
41 |
+
fps_end_time = datetime.datetime.now()
|
42 |
+
time_diff = fps_end_time - fps_start_time
|
43 |
+
if time_diff.seconds == 0:
|
44 |
+
fps = 0.0
|
45 |
+
else:
|
46 |
+
fps = (total_frames / time_diff.seconds)
|
47 |
+
|
48 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
49 |
+
|
50 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
51 |
+
|
52 |
+
cv2.imshow("Application", frame)
|
53 |
+
key = cv2.waitKey(1)
|
54 |
+
if key == ord('q'):
|
55 |
+
break
|
56 |
+
|
57 |
+
cv2.destroyAllWindows()
|
58 |
+
|
59 |
+
|
60 |
+
main()
|
face_mask_detector.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
|
2 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
from imutils.video import VideoStream
|
5 |
+
import numpy as np
|
6 |
+
import argparse
|
7 |
+
import imutils
|
8 |
+
import time
|
9 |
+
import cv2
|
10 |
+
import os
|
11 |
+
import datetime
|
12 |
+
|
13 |
+
proto_txt_path = 'deploy.prototxt'
|
14 |
+
model_path = 'res10_300x300_ssd_iter_140000.caffemodel'
|
15 |
+
face_detector = cv2.dnn.readNetFromCaffe(proto_txt_path, model_path)
|
16 |
+
|
17 |
+
mask_detector = load_model('mask_detector.model')
|
18 |
+
|
19 |
+
cap = cv2.VideoCapture('mask.mp4')
|
20 |
+
|
21 |
+
while True:
|
22 |
+
ret, frame = cap.read()
|
23 |
+
frame = imutils.resize(frame, width=400)
|
24 |
+
(h, w) = frame.shape[:2]
|
25 |
+
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104, 177, 123))
|
26 |
+
|
27 |
+
face_detector.setInput(blob)
|
28 |
+
detections = face_detector.forward()
|
29 |
+
|
30 |
+
faces = []
|
31 |
+
bbox = []
|
32 |
+
results = []
|
33 |
+
|
34 |
+
for i in range(0, detections.shape[2]):
|
35 |
+
confidence = detections[0, 0, i, 2]
|
36 |
+
|
37 |
+
if confidence > 0.5:
|
38 |
+
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
|
39 |
+
(startX, startY, endX, endY) = box.astype("int")
|
40 |
+
|
41 |
+
face = frame[startY:endY, startX:endX]
|
42 |
+
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
|
43 |
+
face = cv2.resize(face, (224, 224))
|
44 |
+
face = img_to_array(face)
|
45 |
+
face = preprocess_input(face)
|
46 |
+
face = np.expand_dims(face, axis=0)
|
47 |
+
|
48 |
+
faces.append(face)
|
49 |
+
bbox.append((startX, startY, endX, endY))
|
50 |
+
|
51 |
+
if len(faces) > 0:
|
52 |
+
results = mask_detector.predict(faces)
|
53 |
+
|
54 |
+
for (face_box, result) in zip(bbox, results):
|
55 |
+
(startX, startY, endX, endY) = face_box
|
56 |
+
(mask, withoutMask) = result
|
57 |
+
|
58 |
+
label = ""
|
59 |
+
if mask > withoutMask:
|
60 |
+
label = "Mask"
|
61 |
+
color = (0, 255, 0)
|
62 |
+
else:
|
63 |
+
label = "No Mask"
|
64 |
+
color = (0, 0, 255)
|
65 |
+
|
66 |
+
cv2.putText(frame, label, (startX, startY-10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
|
67 |
+
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
|
68 |
+
|
69 |
+
cv2.imshow("Frame", frame)
|
70 |
+
key = cv2.waitKey(1) & 0xFF
|
71 |
+
|
72 |
+
if key == ord('q'):
|
73 |
+
break
|
fps_example.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import datetime
|
3 |
+
import imutils
|
4 |
+
|
5 |
+
|
6 |
+
def main():
|
7 |
+
cap = cv2.VideoCapture('test_video.mp4')
|
8 |
+
|
9 |
+
fps_start_time = datetime.datetime.now()
|
10 |
+
fps = 0
|
11 |
+
total_frames = 0
|
12 |
+
|
13 |
+
while True:
|
14 |
+
ret, frame = cap.read()
|
15 |
+
frame = imutils.resize(frame, width=800)
|
16 |
+
total_frames = total_frames + 1
|
17 |
+
|
18 |
+
fps_end_time = datetime.datetime.now()
|
19 |
+
time_diff = fps_end_time - fps_start_time
|
20 |
+
if time_diff.seconds == 0:
|
21 |
+
fps = 0.0
|
22 |
+
else:
|
23 |
+
fps = (total_frames / time_diff.seconds)
|
24 |
+
|
25 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
26 |
+
|
27 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
28 |
+
|
29 |
+
cv2.imshow("Application", frame)
|
30 |
+
key = cv2.waitKey(1)
|
31 |
+
if key == ord('q'):
|
32 |
+
break
|
33 |
+
|
34 |
+
cv2.destroyAllWindows()
|
35 |
+
|
36 |
+
|
37 |
+
main()
|
generate_keys.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from pathlib import Path
|
3 |
+
import streamlit_authenticator as stauth
|
4 |
+
# print("Done !!!")
|
5 |
+
|
6 |
+
names = ["dmin", "ser"]
|
7 |
+
|
8 |
+
username =["admin", "user"]
|
9 |
+
|
10 |
+
password =["admin123", "user123"]
|
11 |
+
|
12 |
+
hashed_passwords =stauth.Hasher(password).generate()
|
13 |
+
|
14 |
+
file_path = Path(__file__).parent / "hashed_pw.pkl"
|
15 |
+
|
16 |
+
with file_path.open("wb") as file:
|
17 |
+
pickle.dump(hashed_passwords, file)
|
img/cat.jpg
ADDED
img/dog.jpg
ADDED
img/input_image.jpg
ADDED
img/people.jpg
ADDED
logo.jpeg
ADDED
mask.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dc1d0ed71d79c29eaa4b8503c829fcf7c840cab93756baabf97238f999432e6
|
3 |
+
size 6143986
|
mask_detector.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a62288c0832df0fad0e97b881b5268d3deb40ec372611b7d81c913715799af00
|
3 |
+
size 11483536
|
model files/face detection model/deploy.prototxt
ADDED
@@ -0,0 +1,1789 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
input: "data"
|
2 |
+
input_shape {
|
3 |
+
dim: 1
|
4 |
+
dim: 3
|
5 |
+
dim: 300
|
6 |
+
dim: 300
|
7 |
+
}
|
8 |
+
|
9 |
+
layer {
|
10 |
+
name: "data_bn"
|
11 |
+
type: "BatchNorm"
|
12 |
+
bottom: "data"
|
13 |
+
top: "data_bn"
|
14 |
+
param {
|
15 |
+
lr_mult: 0.0
|
16 |
+
}
|
17 |
+
param {
|
18 |
+
lr_mult: 0.0
|
19 |
+
}
|
20 |
+
param {
|
21 |
+
lr_mult: 0.0
|
22 |
+
}
|
23 |
+
}
|
24 |
+
layer {
|
25 |
+
name: "data_scale"
|
26 |
+
type: "Scale"
|
27 |
+
bottom: "data_bn"
|
28 |
+
top: "data_bn"
|
29 |
+
param {
|
30 |
+
lr_mult: 1.0
|
31 |
+
decay_mult: 1.0
|
32 |
+
}
|
33 |
+
param {
|
34 |
+
lr_mult: 2.0
|
35 |
+
decay_mult: 1.0
|
36 |
+
}
|
37 |
+
scale_param {
|
38 |
+
bias_term: true
|
39 |
+
}
|
40 |
+
}
|
41 |
+
layer {
|
42 |
+
name: "conv1_h"
|
43 |
+
type: "Convolution"
|
44 |
+
bottom: "data_bn"
|
45 |
+
top: "conv1_h"
|
46 |
+
param {
|
47 |
+
lr_mult: 1.0
|
48 |
+
decay_mult: 1.0
|
49 |
+
}
|
50 |
+
param {
|
51 |
+
lr_mult: 2.0
|
52 |
+
decay_mult: 1.0
|
53 |
+
}
|
54 |
+
convolution_param {
|
55 |
+
num_output: 32
|
56 |
+
pad: 3
|
57 |
+
kernel_size: 7
|
58 |
+
stride: 2
|
59 |
+
weight_filler {
|
60 |
+
type: "msra"
|
61 |
+
variance_norm: FAN_OUT
|
62 |
+
}
|
63 |
+
bias_filler {
|
64 |
+
type: "constant"
|
65 |
+
value: 0.0
|
66 |
+
}
|
67 |
+
}
|
68 |
+
}
|
69 |
+
layer {
|
70 |
+
name: "conv1_bn_h"
|
71 |
+
type: "BatchNorm"
|
72 |
+
bottom: "conv1_h"
|
73 |
+
top: "conv1_h"
|
74 |
+
param {
|
75 |
+
lr_mult: 0.0
|
76 |
+
}
|
77 |
+
param {
|
78 |
+
lr_mult: 0.0
|
79 |
+
}
|
80 |
+
param {
|
81 |
+
lr_mult: 0.0
|
82 |
+
}
|
83 |
+
}
|
84 |
+
layer {
|
85 |
+
name: "conv1_scale_h"
|
86 |
+
type: "Scale"
|
87 |
+
bottom: "conv1_h"
|
88 |
+
top: "conv1_h"
|
89 |
+
param {
|
90 |
+
lr_mult: 1.0
|
91 |
+
decay_mult: 1.0
|
92 |
+
}
|
93 |
+
param {
|
94 |
+
lr_mult: 2.0
|
95 |
+
decay_mult: 1.0
|
96 |
+
}
|
97 |
+
scale_param {
|
98 |
+
bias_term: true
|
99 |
+
}
|
100 |
+
}
|
101 |
+
layer {
|
102 |
+
name: "conv1_relu"
|
103 |
+
type: "ReLU"
|
104 |
+
bottom: "conv1_h"
|
105 |
+
top: "conv1_h"
|
106 |
+
}
|
107 |
+
layer {
|
108 |
+
name: "conv1_pool"
|
109 |
+
type: "Pooling"
|
110 |
+
bottom: "conv1_h"
|
111 |
+
top: "conv1_pool"
|
112 |
+
pooling_param {
|
113 |
+
kernel_size: 3
|
114 |
+
stride: 2
|
115 |
+
}
|
116 |
+
}
|
117 |
+
layer {
|
118 |
+
name: "layer_64_1_conv1_h"
|
119 |
+
type: "Convolution"
|
120 |
+
bottom: "conv1_pool"
|
121 |
+
top: "layer_64_1_conv1_h"
|
122 |
+
param {
|
123 |
+
lr_mult: 1.0
|
124 |
+
decay_mult: 1.0
|
125 |
+
}
|
126 |
+
convolution_param {
|
127 |
+
num_output: 32
|
128 |
+
bias_term: false
|
129 |
+
pad: 1
|
130 |
+
kernel_size: 3
|
131 |
+
stride: 1
|
132 |
+
weight_filler {
|
133 |
+
type: "msra"
|
134 |
+
}
|
135 |
+
bias_filler {
|
136 |
+
type: "constant"
|
137 |
+
value: 0.0
|
138 |
+
}
|
139 |
+
}
|
140 |
+
}
|
141 |
+
layer {
|
142 |
+
name: "layer_64_1_bn2_h"
|
143 |
+
type: "BatchNorm"
|
144 |
+
bottom: "layer_64_1_conv1_h"
|
145 |
+
top: "layer_64_1_conv1_h"
|
146 |
+
param {
|
147 |
+
lr_mult: 0.0
|
148 |
+
}
|
149 |
+
param {
|
150 |
+
lr_mult: 0.0
|
151 |
+
}
|
152 |
+
param {
|
153 |
+
lr_mult: 0.0
|
154 |
+
}
|
155 |
+
}
|
156 |
+
layer {
|
157 |
+
name: "layer_64_1_scale2_h"
|
158 |
+
type: "Scale"
|
159 |
+
bottom: "layer_64_1_conv1_h"
|
160 |
+
top: "layer_64_1_conv1_h"
|
161 |
+
param {
|
162 |
+
lr_mult: 1.0
|
163 |
+
decay_mult: 1.0
|
164 |
+
}
|
165 |
+
param {
|
166 |
+
lr_mult: 2.0
|
167 |
+
decay_mult: 1.0
|
168 |
+
}
|
169 |
+
scale_param {
|
170 |
+
bias_term: true
|
171 |
+
}
|
172 |
+
}
|
173 |
+
layer {
|
174 |
+
name: "layer_64_1_relu2"
|
175 |
+
type: "ReLU"
|
176 |
+
bottom: "layer_64_1_conv1_h"
|
177 |
+
top: "layer_64_1_conv1_h"
|
178 |
+
}
|
179 |
+
layer {
|
180 |
+
name: "layer_64_1_conv2_h"
|
181 |
+
type: "Convolution"
|
182 |
+
bottom: "layer_64_1_conv1_h"
|
183 |
+
top: "layer_64_1_conv2_h"
|
184 |
+
param {
|
185 |
+
lr_mult: 1.0
|
186 |
+
decay_mult: 1.0
|
187 |
+
}
|
188 |
+
convolution_param {
|
189 |
+
num_output: 32
|
190 |
+
bias_term: false
|
191 |
+
pad: 1
|
192 |
+
kernel_size: 3
|
193 |
+
stride: 1
|
194 |
+
weight_filler {
|
195 |
+
type: "msra"
|
196 |
+
}
|
197 |
+
bias_filler {
|
198 |
+
type: "constant"
|
199 |
+
value: 0.0
|
200 |
+
}
|
201 |
+
}
|
202 |
+
}
|
203 |
+
layer {
|
204 |
+
name: "layer_64_1_sum"
|
205 |
+
type: "Eltwise"
|
206 |
+
bottom: "layer_64_1_conv2_h"
|
207 |
+
bottom: "conv1_pool"
|
208 |
+
top: "layer_64_1_sum"
|
209 |
+
}
|
210 |
+
layer {
|
211 |
+
name: "layer_128_1_bn1_h"
|
212 |
+
type: "BatchNorm"
|
213 |
+
bottom: "layer_64_1_sum"
|
214 |
+
top: "layer_128_1_bn1_h"
|
215 |
+
param {
|
216 |
+
lr_mult: 0.0
|
217 |
+
}
|
218 |
+
param {
|
219 |
+
lr_mult: 0.0
|
220 |
+
}
|
221 |
+
param {
|
222 |
+
lr_mult: 0.0
|
223 |
+
}
|
224 |
+
}
|
225 |
+
layer {
|
226 |
+
name: "layer_128_1_scale1_h"
|
227 |
+
type: "Scale"
|
228 |
+
bottom: "layer_128_1_bn1_h"
|
229 |
+
top: "layer_128_1_bn1_h"
|
230 |
+
param {
|
231 |
+
lr_mult: 1.0
|
232 |
+
decay_mult: 1.0
|
233 |
+
}
|
234 |
+
param {
|
235 |
+
lr_mult: 2.0
|
236 |
+
decay_mult: 1.0
|
237 |
+
}
|
238 |
+
scale_param {
|
239 |
+
bias_term: true
|
240 |
+
}
|
241 |
+
}
|
242 |
+
layer {
|
243 |
+
name: "layer_128_1_relu1"
|
244 |
+
type: "ReLU"
|
245 |
+
bottom: "layer_128_1_bn1_h"
|
246 |
+
top: "layer_128_1_bn1_h"
|
247 |
+
}
|
248 |
+
layer {
|
249 |
+
name: "layer_128_1_conv1_h"
|
250 |
+
type: "Convolution"
|
251 |
+
bottom: "layer_128_1_bn1_h"
|
252 |
+
top: "layer_128_1_conv1_h"
|
253 |
+
param {
|
254 |
+
lr_mult: 1.0
|
255 |
+
decay_mult: 1.0
|
256 |
+
}
|
257 |
+
convolution_param {
|
258 |
+
num_output: 128
|
259 |
+
bias_term: false
|
260 |
+
pad: 1
|
261 |
+
kernel_size: 3
|
262 |
+
stride: 2
|
263 |
+
weight_filler {
|
264 |
+
type: "msra"
|
265 |
+
}
|
266 |
+
bias_filler {
|
267 |
+
type: "constant"
|
268 |
+
value: 0.0
|
269 |
+
}
|
270 |
+
}
|
271 |
+
}
|
272 |
+
layer {
|
273 |
+
name: "layer_128_1_bn2"
|
274 |
+
type: "BatchNorm"
|
275 |
+
bottom: "layer_128_1_conv1_h"
|
276 |
+
top: "layer_128_1_conv1_h"
|
277 |
+
param {
|
278 |
+
lr_mult: 0.0
|
279 |
+
}
|
280 |
+
param {
|
281 |
+
lr_mult: 0.0
|
282 |
+
}
|
283 |
+
param {
|
284 |
+
lr_mult: 0.0
|
285 |
+
}
|
286 |
+
}
|
287 |
+
layer {
|
288 |
+
name: "layer_128_1_scale2"
|
289 |
+
type: "Scale"
|
290 |
+
bottom: "layer_128_1_conv1_h"
|
291 |
+
top: "layer_128_1_conv1_h"
|
292 |
+
param {
|
293 |
+
lr_mult: 1.0
|
294 |
+
decay_mult: 1.0
|
295 |
+
}
|
296 |
+
param {
|
297 |
+
lr_mult: 2.0
|
298 |
+
decay_mult: 1.0
|
299 |
+
}
|
300 |
+
scale_param {
|
301 |
+
bias_term: true
|
302 |
+
}
|
303 |
+
}
|
304 |
+
layer {
|
305 |
+
name: "layer_128_1_relu2"
|
306 |
+
type: "ReLU"
|
307 |
+
bottom: "layer_128_1_conv1_h"
|
308 |
+
top: "layer_128_1_conv1_h"
|
309 |
+
}
|
310 |
+
layer {
|
311 |
+
name: "layer_128_1_conv2"
|
312 |
+
type: "Convolution"
|
313 |
+
bottom: "layer_128_1_conv1_h"
|
314 |
+
top: "layer_128_1_conv2"
|
315 |
+
param {
|
316 |
+
lr_mult: 1.0
|
317 |
+
decay_mult: 1.0
|
318 |
+
}
|
319 |
+
convolution_param {
|
320 |
+
num_output: 128
|
321 |
+
bias_term: false
|
322 |
+
pad: 1
|
323 |
+
kernel_size: 3
|
324 |
+
stride: 1
|
325 |
+
weight_filler {
|
326 |
+
type: "msra"
|
327 |
+
}
|
328 |
+
bias_filler {
|
329 |
+
type: "constant"
|
330 |
+
value: 0.0
|
331 |
+
}
|
332 |
+
}
|
333 |
+
}
|
334 |
+
layer {
|
335 |
+
name: "layer_128_1_conv_expand_h"
|
336 |
+
type: "Convolution"
|
337 |
+
bottom: "layer_128_1_bn1_h"
|
338 |
+
top: "layer_128_1_conv_expand_h"
|
339 |
+
param {
|
340 |
+
lr_mult: 1.0
|
341 |
+
decay_mult: 1.0
|
342 |
+
}
|
343 |
+
convolution_param {
|
344 |
+
num_output: 128
|
345 |
+
bias_term: false
|
346 |
+
pad: 0
|
347 |
+
kernel_size: 1
|
348 |
+
stride: 2
|
349 |
+
weight_filler {
|
350 |
+
type: "msra"
|
351 |
+
}
|
352 |
+
bias_filler {
|
353 |
+
type: "constant"
|
354 |
+
value: 0.0
|
355 |
+
}
|
356 |
+
}
|
357 |
+
}
|
358 |
+
layer {
|
359 |
+
name: "layer_128_1_sum"
|
360 |
+
type: "Eltwise"
|
361 |
+
bottom: "layer_128_1_conv2"
|
362 |
+
bottom: "layer_128_1_conv_expand_h"
|
363 |
+
top: "layer_128_1_sum"
|
364 |
+
}
|
365 |
+
layer {
|
366 |
+
name: "layer_256_1_bn1"
|
367 |
+
type: "BatchNorm"
|
368 |
+
bottom: "layer_128_1_sum"
|
369 |
+
top: "layer_256_1_bn1"
|
370 |
+
param {
|
371 |
+
lr_mult: 0.0
|
372 |
+
}
|
373 |
+
param {
|
374 |
+
lr_mult: 0.0
|
375 |
+
}
|
376 |
+
param {
|
377 |
+
lr_mult: 0.0
|
378 |
+
}
|
379 |
+
}
|
380 |
+
layer {
|
381 |
+
name: "layer_256_1_scale1"
|
382 |
+
type: "Scale"
|
383 |
+
bottom: "layer_256_1_bn1"
|
384 |
+
top: "layer_256_1_bn1"
|
385 |
+
param {
|
386 |
+
lr_mult: 1.0
|
387 |
+
decay_mult: 1.0
|
388 |
+
}
|
389 |
+
param {
|
390 |
+
lr_mult: 2.0
|
391 |
+
decay_mult: 1.0
|
392 |
+
}
|
393 |
+
scale_param {
|
394 |
+
bias_term: true
|
395 |
+
}
|
396 |
+
}
|
397 |
+
layer {
|
398 |
+
name: "layer_256_1_relu1"
|
399 |
+
type: "ReLU"
|
400 |
+
bottom: "layer_256_1_bn1"
|
401 |
+
top: "layer_256_1_bn1"
|
402 |
+
}
|
403 |
+
layer {
|
404 |
+
name: "layer_256_1_conv1"
|
405 |
+
type: "Convolution"
|
406 |
+
bottom: "layer_256_1_bn1"
|
407 |
+
top: "layer_256_1_conv1"
|
408 |
+
param {
|
409 |
+
lr_mult: 1.0
|
410 |
+
decay_mult: 1.0
|
411 |
+
}
|
412 |
+
convolution_param {
|
413 |
+
num_output: 256
|
414 |
+
bias_term: false
|
415 |
+
pad: 1
|
416 |
+
kernel_size: 3
|
417 |
+
stride: 2
|
418 |
+
weight_filler {
|
419 |
+
type: "msra"
|
420 |
+
}
|
421 |
+
bias_filler {
|
422 |
+
type: "constant"
|
423 |
+
value: 0.0
|
424 |
+
}
|
425 |
+
}
|
426 |
+
}
|
427 |
+
layer {
|
428 |
+
name: "layer_256_1_bn2"
|
429 |
+
type: "BatchNorm"
|
430 |
+
bottom: "layer_256_1_conv1"
|
431 |
+
top: "layer_256_1_conv1"
|
432 |
+
param {
|
433 |
+
lr_mult: 0.0
|
434 |
+
}
|
435 |
+
param {
|
436 |
+
lr_mult: 0.0
|
437 |
+
}
|
438 |
+
param {
|
439 |
+
lr_mult: 0.0
|
440 |
+
}
|
441 |
+
}
|
442 |
+
layer {
|
443 |
+
name: "layer_256_1_scale2"
|
444 |
+
type: "Scale"
|
445 |
+
bottom: "layer_256_1_conv1"
|
446 |
+
top: "layer_256_1_conv1"
|
447 |
+
param {
|
448 |
+
lr_mult: 1.0
|
449 |
+
decay_mult: 1.0
|
450 |
+
}
|
451 |
+
param {
|
452 |
+
lr_mult: 2.0
|
453 |
+
decay_mult: 1.0
|
454 |
+
}
|
455 |
+
scale_param {
|
456 |
+
bias_term: true
|
457 |
+
}
|
458 |
+
}
|
459 |
+
layer {
|
460 |
+
name: "layer_256_1_relu2"
|
461 |
+
type: "ReLU"
|
462 |
+
bottom: "layer_256_1_conv1"
|
463 |
+
top: "layer_256_1_conv1"
|
464 |
+
}
|
465 |
+
layer {
|
466 |
+
name: "layer_256_1_conv2"
|
467 |
+
type: "Convolution"
|
468 |
+
bottom: "layer_256_1_conv1"
|
469 |
+
top: "layer_256_1_conv2"
|
470 |
+
param {
|
471 |
+
lr_mult: 1.0
|
472 |
+
decay_mult: 1.0
|
473 |
+
}
|
474 |
+
convolution_param {
|
475 |
+
num_output: 256
|
476 |
+
bias_term: false
|
477 |
+
pad: 1
|
478 |
+
kernel_size: 3
|
479 |
+
stride: 1
|
480 |
+
weight_filler {
|
481 |
+
type: "msra"
|
482 |
+
}
|
483 |
+
bias_filler {
|
484 |
+
type: "constant"
|
485 |
+
value: 0.0
|
486 |
+
}
|
487 |
+
}
|
488 |
+
}
|
489 |
+
layer {
|
490 |
+
name: "layer_256_1_conv_expand"
|
491 |
+
type: "Convolution"
|
492 |
+
bottom: "layer_256_1_bn1"
|
493 |
+
top: "layer_256_1_conv_expand"
|
494 |
+
param {
|
495 |
+
lr_mult: 1.0
|
496 |
+
decay_mult: 1.0
|
497 |
+
}
|
498 |
+
convolution_param {
|
499 |
+
num_output: 256
|
500 |
+
bias_term: false
|
501 |
+
pad: 0
|
502 |
+
kernel_size: 1
|
503 |
+
stride: 2
|
504 |
+
weight_filler {
|
505 |
+
type: "msra"
|
506 |
+
}
|
507 |
+
bias_filler {
|
508 |
+
type: "constant"
|
509 |
+
value: 0.0
|
510 |
+
}
|
511 |
+
}
|
512 |
+
}
|
513 |
+
layer {
|
514 |
+
name: "layer_256_1_sum"
|
515 |
+
type: "Eltwise"
|
516 |
+
bottom: "layer_256_1_conv2"
|
517 |
+
bottom: "layer_256_1_conv_expand"
|
518 |
+
top: "layer_256_1_sum"
|
519 |
+
}
|
520 |
+
layer {
|
521 |
+
name: "layer_512_1_bn1"
|
522 |
+
type: "BatchNorm"
|
523 |
+
bottom: "layer_256_1_sum"
|
524 |
+
top: "layer_512_1_bn1"
|
525 |
+
param {
|
526 |
+
lr_mult: 0.0
|
527 |
+
}
|
528 |
+
param {
|
529 |
+
lr_mult: 0.0
|
530 |
+
}
|
531 |
+
param {
|
532 |
+
lr_mult: 0.0
|
533 |
+
}
|
534 |
+
}
|
535 |
+
layer {
|
536 |
+
name: "layer_512_1_scale1"
|
537 |
+
type: "Scale"
|
538 |
+
bottom: "layer_512_1_bn1"
|
539 |
+
top: "layer_512_1_bn1"
|
540 |
+
param {
|
541 |
+
lr_mult: 1.0
|
542 |
+
decay_mult: 1.0
|
543 |
+
}
|
544 |
+
param {
|
545 |
+
lr_mult: 2.0
|
546 |
+
decay_mult: 1.0
|
547 |
+
}
|
548 |
+
scale_param {
|
549 |
+
bias_term: true
|
550 |
+
}
|
551 |
+
}
|
552 |
+
layer {
|
553 |
+
name: "layer_512_1_relu1"
|
554 |
+
type: "ReLU"
|
555 |
+
bottom: "layer_512_1_bn1"
|
556 |
+
top: "layer_512_1_bn1"
|
557 |
+
}
|
558 |
+
layer {
|
559 |
+
name: "layer_512_1_conv1_h"
|
560 |
+
type: "Convolution"
|
561 |
+
bottom: "layer_512_1_bn1"
|
562 |
+
top: "layer_512_1_conv1_h"
|
563 |
+
param {
|
564 |
+
lr_mult: 1.0
|
565 |
+
decay_mult: 1.0
|
566 |
+
}
|
567 |
+
convolution_param {
|
568 |
+
num_output: 128
|
569 |
+
bias_term: false
|
570 |
+
pad: 1
|
571 |
+
kernel_size: 3
|
572 |
+
stride: 1 # 2
|
573 |
+
weight_filler {
|
574 |
+
type: "msra"
|
575 |
+
}
|
576 |
+
bias_filler {
|
577 |
+
type: "constant"
|
578 |
+
value: 0.0
|
579 |
+
}
|
580 |
+
}
|
581 |
+
}
|
582 |
+
layer {
|
583 |
+
name: "layer_512_1_bn2_h"
|
584 |
+
type: "BatchNorm"
|
585 |
+
bottom: "layer_512_1_conv1_h"
|
586 |
+
top: "layer_512_1_conv1_h"
|
587 |
+
param {
|
588 |
+
lr_mult: 0.0
|
589 |
+
}
|
590 |
+
param {
|
591 |
+
lr_mult: 0.0
|
592 |
+
}
|
593 |
+
param {
|
594 |
+
lr_mult: 0.0
|
595 |
+
}
|
596 |
+
}
|
597 |
+
layer {
|
598 |
+
name: "layer_512_1_scale2_h"
|
599 |
+
type: "Scale"
|
600 |
+
bottom: "layer_512_1_conv1_h"
|
601 |
+
top: "layer_512_1_conv1_h"
|
602 |
+
param {
|
603 |
+
lr_mult: 1.0
|
604 |
+
decay_mult: 1.0
|
605 |
+
}
|
606 |
+
param {
|
607 |
+
lr_mult: 2.0
|
608 |
+
decay_mult: 1.0
|
609 |
+
}
|
610 |
+
scale_param {
|
611 |
+
bias_term: true
|
612 |
+
}
|
613 |
+
}
|
614 |
+
layer {
|
615 |
+
name: "layer_512_1_relu2"
|
616 |
+
type: "ReLU"
|
617 |
+
bottom: "layer_512_1_conv1_h"
|
618 |
+
top: "layer_512_1_conv1_h"
|
619 |
+
}
|
620 |
+
layer {
|
621 |
+
name: "layer_512_1_conv2_h"
|
622 |
+
type: "Convolution"
|
623 |
+
bottom: "layer_512_1_conv1_h"
|
624 |
+
top: "layer_512_1_conv2_h"
|
625 |
+
param {
|
626 |
+
lr_mult: 1.0
|
627 |
+
decay_mult: 1.0
|
628 |
+
}
|
629 |
+
convolution_param {
|
630 |
+
num_output: 256
|
631 |
+
bias_term: false
|
632 |
+
pad: 2 # 1
|
633 |
+
kernel_size: 3
|
634 |
+
stride: 1
|
635 |
+
dilation: 2
|
636 |
+
weight_filler {
|
637 |
+
type: "msra"
|
638 |
+
}
|
639 |
+
bias_filler {
|
640 |
+
type: "constant"
|
641 |
+
value: 0.0
|
642 |
+
}
|
643 |
+
}
|
644 |
+
}
|
645 |
+
layer {
|
646 |
+
name: "layer_512_1_conv_expand_h"
|
647 |
+
type: "Convolution"
|
648 |
+
bottom: "layer_512_1_bn1"
|
649 |
+
top: "layer_512_1_conv_expand_h"
|
650 |
+
param {
|
651 |
+
lr_mult: 1.0
|
652 |
+
decay_mult: 1.0
|
653 |
+
}
|
654 |
+
convolution_param {
|
655 |
+
num_output: 256
|
656 |
+
bias_term: false
|
657 |
+
pad: 0
|
658 |
+
kernel_size: 1
|
659 |
+
stride: 1 # 2
|
660 |
+
weight_filler {
|
661 |
+
type: "msra"
|
662 |
+
}
|
663 |
+
bias_filler {
|
664 |
+
type: "constant"
|
665 |
+
value: 0.0
|
666 |
+
}
|
667 |
+
}
|
668 |
+
}
|
669 |
+
layer {
|
670 |
+
name: "layer_512_1_sum"
|
671 |
+
type: "Eltwise"
|
672 |
+
bottom: "layer_512_1_conv2_h"
|
673 |
+
bottom: "layer_512_1_conv_expand_h"
|
674 |
+
top: "layer_512_1_sum"
|
675 |
+
}
|
676 |
+
layer {
|
677 |
+
name: "last_bn_h"
|
678 |
+
type: "BatchNorm"
|
679 |
+
bottom: "layer_512_1_sum"
|
680 |
+
top: "layer_512_1_sum"
|
681 |
+
param {
|
682 |
+
lr_mult: 0.0
|
683 |
+
}
|
684 |
+
param {
|
685 |
+
lr_mult: 0.0
|
686 |
+
}
|
687 |
+
param {
|
688 |
+
lr_mult: 0.0
|
689 |
+
}
|
690 |
+
}
|
691 |
+
layer {
|
692 |
+
name: "last_scale_h"
|
693 |
+
type: "Scale"
|
694 |
+
bottom: "layer_512_1_sum"
|
695 |
+
top: "layer_512_1_sum"
|
696 |
+
param {
|
697 |
+
lr_mult: 1.0
|
698 |
+
decay_mult: 1.0
|
699 |
+
}
|
700 |
+
param {
|
701 |
+
lr_mult: 2.0
|
702 |
+
decay_mult: 1.0
|
703 |
+
}
|
704 |
+
scale_param {
|
705 |
+
bias_term: true
|
706 |
+
}
|
707 |
+
}
|
708 |
+
layer {
|
709 |
+
name: "last_relu"
|
710 |
+
type: "ReLU"
|
711 |
+
bottom: "layer_512_1_sum"
|
712 |
+
top: "fc7"
|
713 |
+
}
|
714 |
+
|
715 |
+
layer {
|
716 |
+
name: "conv6_1_h"
|
717 |
+
type: "Convolution"
|
718 |
+
bottom: "fc7"
|
719 |
+
top: "conv6_1_h"
|
720 |
+
param {
|
721 |
+
lr_mult: 1
|
722 |
+
decay_mult: 1
|
723 |
+
}
|
724 |
+
param {
|
725 |
+
lr_mult: 2
|
726 |
+
decay_mult: 0
|
727 |
+
}
|
728 |
+
convolution_param {
|
729 |
+
num_output: 128
|
730 |
+
pad: 0
|
731 |
+
kernel_size: 1
|
732 |
+
stride: 1
|
733 |
+
weight_filler {
|
734 |
+
type: "xavier"
|
735 |
+
}
|
736 |
+
bias_filler {
|
737 |
+
type: "constant"
|
738 |
+
value: 0
|
739 |
+
}
|
740 |
+
}
|
741 |
+
}
|
742 |
+
layer {
|
743 |
+
name: "conv6_1_relu"
|
744 |
+
type: "ReLU"
|
745 |
+
bottom: "conv6_1_h"
|
746 |
+
top: "conv6_1_h"
|
747 |
+
}
|
748 |
+
layer {
|
749 |
+
name: "conv6_2_h"
|
750 |
+
type: "Convolution"
|
751 |
+
bottom: "conv6_1_h"
|
752 |
+
top: "conv6_2_h"
|
753 |
+
param {
|
754 |
+
lr_mult: 1
|
755 |
+
decay_mult: 1
|
756 |
+
}
|
757 |
+
param {
|
758 |
+
lr_mult: 2
|
759 |
+
decay_mult: 0
|
760 |
+
}
|
761 |
+
convolution_param {
|
762 |
+
num_output: 256
|
763 |
+
pad: 1
|
764 |
+
kernel_size: 3
|
765 |
+
stride: 2
|
766 |
+
weight_filler {
|
767 |
+
type: "xavier"
|
768 |
+
}
|
769 |
+
bias_filler {
|
770 |
+
type: "constant"
|
771 |
+
value: 0
|
772 |
+
}
|
773 |
+
}
|
774 |
+
}
|
775 |
+
layer {
|
776 |
+
name: "conv6_2_relu"
|
777 |
+
type: "ReLU"
|
778 |
+
bottom: "conv6_2_h"
|
779 |
+
top: "conv6_2_h"
|
780 |
+
}
|
781 |
+
layer {
|
782 |
+
name: "conv7_1_h"
|
783 |
+
type: "Convolution"
|
784 |
+
bottom: "conv6_2_h"
|
785 |
+
top: "conv7_1_h"
|
786 |
+
param {
|
787 |
+
lr_mult: 1
|
788 |
+
decay_mult: 1
|
789 |
+
}
|
790 |
+
param {
|
791 |
+
lr_mult: 2
|
792 |
+
decay_mult: 0
|
793 |
+
}
|
794 |
+
convolution_param {
|
795 |
+
num_output: 64
|
796 |
+
pad: 0
|
797 |
+
kernel_size: 1
|
798 |
+
stride: 1
|
799 |
+
weight_filler {
|
800 |
+
type: "xavier"
|
801 |
+
}
|
802 |
+
bias_filler {
|
803 |
+
type: "constant"
|
804 |
+
value: 0
|
805 |
+
}
|
806 |
+
}
|
807 |
+
}
|
808 |
+
layer {
|
809 |
+
name: "conv7_1_relu"
|
810 |
+
type: "ReLU"
|
811 |
+
bottom: "conv7_1_h"
|
812 |
+
top: "conv7_1_h"
|
813 |
+
}
|
814 |
+
layer {
|
815 |
+
name: "conv7_2_h"
|
816 |
+
type: "Convolution"
|
817 |
+
bottom: "conv7_1_h"
|
818 |
+
top: "conv7_2_h"
|
819 |
+
param {
|
820 |
+
lr_mult: 1
|
821 |
+
decay_mult: 1
|
822 |
+
}
|
823 |
+
param {
|
824 |
+
lr_mult: 2
|
825 |
+
decay_mult: 0
|
826 |
+
}
|
827 |
+
convolution_param {
|
828 |
+
num_output: 128
|
829 |
+
pad: 1
|
830 |
+
kernel_size: 3
|
831 |
+
stride: 2
|
832 |
+
weight_filler {
|
833 |
+
type: "xavier"
|
834 |
+
}
|
835 |
+
bias_filler {
|
836 |
+
type: "constant"
|
837 |
+
value: 0
|
838 |
+
}
|
839 |
+
}
|
840 |
+
}
|
841 |
+
layer {
|
842 |
+
name: "conv7_2_relu"
|
843 |
+
type: "ReLU"
|
844 |
+
bottom: "conv7_2_h"
|
845 |
+
top: "conv7_2_h"
|
846 |
+
}
|
847 |
+
layer {
|
848 |
+
name: "conv8_1_h"
|
849 |
+
type: "Convolution"
|
850 |
+
bottom: "conv7_2_h"
|
851 |
+
top: "conv8_1_h"
|
852 |
+
param {
|
853 |
+
lr_mult: 1
|
854 |
+
decay_mult: 1
|
855 |
+
}
|
856 |
+
param {
|
857 |
+
lr_mult: 2
|
858 |
+
decay_mult: 0
|
859 |
+
}
|
860 |
+
convolution_param {
|
861 |
+
num_output: 64
|
862 |
+
pad: 0
|
863 |
+
kernel_size: 1
|
864 |
+
stride: 1
|
865 |
+
weight_filler {
|
866 |
+
type: "xavier"
|
867 |
+
}
|
868 |
+
bias_filler {
|
869 |
+
type: "constant"
|
870 |
+
value: 0
|
871 |
+
}
|
872 |
+
}
|
873 |
+
}
|
874 |
+
layer {
|
875 |
+
name: "conv8_1_relu"
|
876 |
+
type: "ReLU"
|
877 |
+
bottom: "conv8_1_h"
|
878 |
+
top: "conv8_1_h"
|
879 |
+
}
|
880 |
+
layer {
|
881 |
+
name: "conv8_2_h"
|
882 |
+
type: "Convolution"
|
883 |
+
bottom: "conv8_1_h"
|
884 |
+
top: "conv8_2_h"
|
885 |
+
param {
|
886 |
+
lr_mult: 1
|
887 |
+
decay_mult: 1
|
888 |
+
}
|
889 |
+
param {
|
890 |
+
lr_mult: 2
|
891 |
+
decay_mult: 0
|
892 |
+
}
|
893 |
+
convolution_param {
|
894 |
+
num_output: 128
|
895 |
+
pad: 1
|
896 |
+
kernel_size: 3
|
897 |
+
stride: 1
|
898 |
+
weight_filler {
|
899 |
+
type: "xavier"
|
900 |
+
}
|
901 |
+
bias_filler {
|
902 |
+
type: "constant"
|
903 |
+
value: 0
|
904 |
+
}
|
905 |
+
}
|
906 |
+
}
|
907 |
+
layer {
|
908 |
+
name: "conv8_2_relu"
|
909 |
+
type: "ReLU"
|
910 |
+
bottom: "conv8_2_h"
|
911 |
+
top: "conv8_2_h"
|
912 |
+
}
|
913 |
+
layer {
|
914 |
+
name: "conv9_1_h"
|
915 |
+
type: "Convolution"
|
916 |
+
bottom: "conv8_2_h"
|
917 |
+
top: "conv9_1_h"
|
918 |
+
param {
|
919 |
+
lr_mult: 1
|
920 |
+
decay_mult: 1
|
921 |
+
}
|
922 |
+
param {
|
923 |
+
lr_mult: 2
|
924 |
+
decay_mult: 0
|
925 |
+
}
|
926 |
+
convolution_param {
|
927 |
+
num_output: 64
|
928 |
+
pad: 0
|
929 |
+
kernel_size: 1
|
930 |
+
stride: 1
|
931 |
+
weight_filler {
|
932 |
+
type: "xavier"
|
933 |
+
}
|
934 |
+
bias_filler {
|
935 |
+
type: "constant"
|
936 |
+
value: 0
|
937 |
+
}
|
938 |
+
}
|
939 |
+
}
|
940 |
+
layer {
|
941 |
+
name: "conv9_1_relu"
|
942 |
+
type: "ReLU"
|
943 |
+
bottom: "conv9_1_h"
|
944 |
+
top: "conv9_1_h"
|
945 |
+
}
|
946 |
+
layer {
|
947 |
+
name: "conv9_2_h"
|
948 |
+
type: "Convolution"
|
949 |
+
bottom: "conv9_1_h"
|
950 |
+
top: "conv9_2_h"
|
951 |
+
param {
|
952 |
+
lr_mult: 1
|
953 |
+
decay_mult: 1
|
954 |
+
}
|
955 |
+
param {
|
956 |
+
lr_mult: 2
|
957 |
+
decay_mult: 0
|
958 |
+
}
|
959 |
+
convolution_param {
|
960 |
+
num_output: 128
|
961 |
+
pad: 1
|
962 |
+
kernel_size: 3
|
963 |
+
stride: 1
|
964 |
+
weight_filler {
|
965 |
+
type: "xavier"
|
966 |
+
}
|
967 |
+
bias_filler {
|
968 |
+
type: "constant"
|
969 |
+
value: 0
|
970 |
+
}
|
971 |
+
}
|
972 |
+
}
|
973 |
+
layer {
|
974 |
+
name: "conv9_2_relu"
|
975 |
+
type: "ReLU"
|
976 |
+
bottom: "conv9_2_h"
|
977 |
+
top: "conv9_2_h"
|
978 |
+
}
|
979 |
+
layer {
|
980 |
+
name: "conv4_3_norm"
|
981 |
+
type: "Normalize"
|
982 |
+
bottom: "layer_256_1_bn1"
|
983 |
+
top: "conv4_3_norm"
|
984 |
+
norm_param {
|
985 |
+
across_spatial: false
|
986 |
+
scale_filler {
|
987 |
+
type: "constant"
|
988 |
+
value: 20
|
989 |
+
}
|
990 |
+
channel_shared: false
|
991 |
+
}
|
992 |
+
}
|
993 |
+
layer {
|
994 |
+
name: "conv4_3_norm_mbox_loc"
|
995 |
+
type: "Convolution"
|
996 |
+
bottom: "conv4_3_norm"
|
997 |
+
top: "conv4_3_norm_mbox_loc"
|
998 |
+
param {
|
999 |
+
lr_mult: 1
|
1000 |
+
decay_mult: 1
|
1001 |
+
}
|
1002 |
+
param {
|
1003 |
+
lr_mult: 2
|
1004 |
+
decay_mult: 0
|
1005 |
+
}
|
1006 |
+
convolution_param {
|
1007 |
+
num_output: 16
|
1008 |
+
pad: 1
|
1009 |
+
kernel_size: 3
|
1010 |
+
stride: 1
|
1011 |
+
weight_filler {
|
1012 |
+
type: "xavier"
|
1013 |
+
}
|
1014 |
+
bias_filler {
|
1015 |
+
type: "constant"
|
1016 |
+
value: 0
|
1017 |
+
}
|
1018 |
+
}
|
1019 |
+
}
|
1020 |
+
layer {
|
1021 |
+
name: "conv4_3_norm_mbox_loc_perm"
|
1022 |
+
type: "Permute"
|
1023 |
+
bottom: "conv4_3_norm_mbox_loc"
|
1024 |
+
top: "conv4_3_norm_mbox_loc_perm"
|
1025 |
+
permute_param {
|
1026 |
+
order: 0
|
1027 |
+
order: 2
|
1028 |
+
order: 3
|
1029 |
+
order: 1
|
1030 |
+
}
|
1031 |
+
}
|
1032 |
+
layer {
|
1033 |
+
name: "conv4_3_norm_mbox_loc_flat"
|
1034 |
+
type: "Flatten"
|
1035 |
+
bottom: "conv4_3_norm_mbox_loc_perm"
|
1036 |
+
top: "conv4_3_norm_mbox_loc_flat"
|
1037 |
+
flatten_param {
|
1038 |
+
axis: 1
|
1039 |
+
}
|
1040 |
+
}
|
1041 |
+
layer {
|
1042 |
+
name: "conv4_3_norm_mbox_conf"
|
1043 |
+
type: "Convolution"
|
1044 |
+
bottom: "conv4_3_norm"
|
1045 |
+
top: "conv4_3_norm_mbox_conf"
|
1046 |
+
param {
|
1047 |
+
lr_mult: 1
|
1048 |
+
decay_mult: 1
|
1049 |
+
}
|
1050 |
+
param {
|
1051 |
+
lr_mult: 2
|
1052 |
+
decay_mult: 0
|
1053 |
+
}
|
1054 |
+
convolution_param {
|
1055 |
+
num_output: 8 # 84
|
1056 |
+
pad: 1
|
1057 |
+
kernel_size: 3
|
1058 |
+
stride: 1
|
1059 |
+
weight_filler {
|
1060 |
+
type: "xavier"
|
1061 |
+
}
|
1062 |
+
bias_filler {
|
1063 |
+
type: "constant"
|
1064 |
+
value: 0
|
1065 |
+
}
|
1066 |
+
}
|
1067 |
+
}
|
1068 |
+
layer {
|
1069 |
+
name: "conv4_3_norm_mbox_conf_perm"
|
1070 |
+
type: "Permute"
|
1071 |
+
bottom: "conv4_3_norm_mbox_conf"
|
1072 |
+
top: "conv4_3_norm_mbox_conf_perm"
|
1073 |
+
permute_param {
|
1074 |
+
order: 0
|
1075 |
+
order: 2
|
1076 |
+
order: 3
|
1077 |
+
order: 1
|
1078 |
+
}
|
1079 |
+
}
|
1080 |
+
layer {
|
1081 |
+
name: "conv4_3_norm_mbox_conf_flat"
|
1082 |
+
type: "Flatten"
|
1083 |
+
bottom: "conv4_3_norm_mbox_conf_perm"
|
1084 |
+
top: "conv4_3_norm_mbox_conf_flat"
|
1085 |
+
flatten_param {
|
1086 |
+
axis: 1
|
1087 |
+
}
|
1088 |
+
}
|
1089 |
+
layer {
|
1090 |
+
name: "conv4_3_norm_mbox_priorbox"
|
1091 |
+
type: "PriorBox"
|
1092 |
+
bottom: "conv4_3_norm"
|
1093 |
+
bottom: "data"
|
1094 |
+
top: "conv4_3_norm_mbox_priorbox"
|
1095 |
+
prior_box_param {
|
1096 |
+
min_size: 30.0
|
1097 |
+
max_size: 60.0
|
1098 |
+
aspect_ratio: 2
|
1099 |
+
flip: true
|
1100 |
+
clip: false
|
1101 |
+
variance: 0.1
|
1102 |
+
variance: 0.1
|
1103 |
+
variance: 0.2
|
1104 |
+
variance: 0.2
|
1105 |
+
step: 8
|
1106 |
+
offset: 0.5
|
1107 |
+
}
|
1108 |
+
}
|
1109 |
+
layer {
|
1110 |
+
name: "fc7_mbox_loc"
|
1111 |
+
type: "Convolution"
|
1112 |
+
bottom: "fc7"
|
1113 |
+
top: "fc7_mbox_loc"
|
1114 |
+
param {
|
1115 |
+
lr_mult: 1
|
1116 |
+
decay_mult: 1
|
1117 |
+
}
|
1118 |
+
param {
|
1119 |
+
lr_mult: 2
|
1120 |
+
decay_mult: 0
|
1121 |
+
}
|
1122 |
+
convolution_param {
|
1123 |
+
num_output: 24
|
1124 |
+
pad: 1
|
1125 |
+
kernel_size: 3
|
1126 |
+
stride: 1
|
1127 |
+
weight_filler {
|
1128 |
+
type: "xavier"
|
1129 |
+
}
|
1130 |
+
bias_filler {
|
1131 |
+
type: "constant"
|
1132 |
+
value: 0
|
1133 |
+
}
|
1134 |
+
}
|
1135 |
+
}
|
1136 |
+
layer {
|
1137 |
+
name: "fc7_mbox_loc_perm"
|
1138 |
+
type: "Permute"
|
1139 |
+
bottom: "fc7_mbox_loc"
|
1140 |
+
top: "fc7_mbox_loc_perm"
|
1141 |
+
permute_param {
|
1142 |
+
order: 0
|
1143 |
+
order: 2
|
1144 |
+
order: 3
|
1145 |
+
order: 1
|
1146 |
+
}
|
1147 |
+
}
|
1148 |
+
layer {
|
1149 |
+
name: "fc7_mbox_loc_flat"
|
1150 |
+
type: "Flatten"
|
1151 |
+
bottom: "fc7_mbox_loc_perm"
|
1152 |
+
top: "fc7_mbox_loc_flat"
|
1153 |
+
flatten_param {
|
1154 |
+
axis: 1
|
1155 |
+
}
|
1156 |
+
}
|
1157 |
+
layer {
|
1158 |
+
name: "fc7_mbox_conf"
|
1159 |
+
type: "Convolution"
|
1160 |
+
bottom: "fc7"
|
1161 |
+
top: "fc7_mbox_conf"
|
1162 |
+
param {
|
1163 |
+
lr_mult: 1
|
1164 |
+
decay_mult: 1
|
1165 |
+
}
|
1166 |
+
param {
|
1167 |
+
lr_mult: 2
|
1168 |
+
decay_mult: 0
|
1169 |
+
}
|
1170 |
+
convolution_param {
|
1171 |
+
num_output: 12 # 126
|
1172 |
+
pad: 1
|
1173 |
+
kernel_size: 3
|
1174 |
+
stride: 1
|
1175 |
+
weight_filler {
|
1176 |
+
type: "xavier"
|
1177 |
+
}
|
1178 |
+
bias_filler {
|
1179 |
+
type: "constant"
|
1180 |
+
value: 0
|
1181 |
+
}
|
1182 |
+
}
|
1183 |
+
}
|
1184 |
+
layer {
|
1185 |
+
name: "fc7_mbox_conf_perm"
|
1186 |
+
type: "Permute"
|
1187 |
+
bottom: "fc7_mbox_conf"
|
1188 |
+
top: "fc7_mbox_conf_perm"
|
1189 |
+
permute_param {
|
1190 |
+
order: 0
|
1191 |
+
order: 2
|
1192 |
+
order: 3
|
1193 |
+
order: 1
|
1194 |
+
}
|
1195 |
+
}
|
1196 |
+
layer {
|
1197 |
+
name: "fc7_mbox_conf_flat"
|
1198 |
+
type: "Flatten"
|
1199 |
+
bottom: "fc7_mbox_conf_perm"
|
1200 |
+
top: "fc7_mbox_conf_flat"
|
1201 |
+
flatten_param {
|
1202 |
+
axis: 1
|
1203 |
+
}
|
1204 |
+
}
|
1205 |
+
layer {
|
1206 |
+
name: "fc7_mbox_priorbox"
|
1207 |
+
type: "PriorBox"
|
1208 |
+
bottom: "fc7"
|
1209 |
+
bottom: "data"
|
1210 |
+
top: "fc7_mbox_priorbox"
|
1211 |
+
prior_box_param {
|
1212 |
+
min_size: 60.0
|
1213 |
+
max_size: 111.0
|
1214 |
+
aspect_ratio: 2
|
1215 |
+
aspect_ratio: 3
|
1216 |
+
flip: true
|
1217 |
+
clip: false
|
1218 |
+
variance: 0.1
|
1219 |
+
variance: 0.1
|
1220 |
+
variance: 0.2
|
1221 |
+
variance: 0.2
|
1222 |
+
step: 16
|
1223 |
+
offset: 0.5
|
1224 |
+
}
|
1225 |
+
}
|
1226 |
+
layer {
|
1227 |
+
name: "conv6_2_mbox_loc"
|
1228 |
+
type: "Convolution"
|
1229 |
+
bottom: "conv6_2_h"
|
1230 |
+
top: "conv6_2_mbox_loc"
|
1231 |
+
param {
|
1232 |
+
lr_mult: 1
|
1233 |
+
decay_mult: 1
|
1234 |
+
}
|
1235 |
+
param {
|
1236 |
+
lr_mult: 2
|
1237 |
+
decay_mult: 0
|
1238 |
+
}
|
1239 |
+
convolution_param {
|
1240 |
+
num_output: 24
|
1241 |
+
pad: 1
|
1242 |
+
kernel_size: 3
|
1243 |
+
stride: 1
|
1244 |
+
weight_filler {
|
1245 |
+
type: "xavier"
|
1246 |
+
}
|
1247 |
+
bias_filler {
|
1248 |
+
type: "constant"
|
1249 |
+
value: 0
|
1250 |
+
}
|
1251 |
+
}
|
1252 |
+
}
|
1253 |
+
layer {
|
1254 |
+
name: "conv6_2_mbox_loc_perm"
|
1255 |
+
type: "Permute"
|
1256 |
+
bottom: "conv6_2_mbox_loc"
|
1257 |
+
top: "conv6_2_mbox_loc_perm"
|
1258 |
+
permute_param {
|
1259 |
+
order: 0
|
1260 |
+
order: 2
|
1261 |
+
order: 3
|
1262 |
+
order: 1
|
1263 |
+
}
|
1264 |
+
}
|
1265 |
+
layer {
|
1266 |
+
name: "conv6_2_mbox_loc_flat"
|
1267 |
+
type: "Flatten"
|
1268 |
+
bottom: "conv6_2_mbox_loc_perm"
|
1269 |
+
top: "conv6_2_mbox_loc_flat"
|
1270 |
+
flatten_param {
|
1271 |
+
axis: 1
|
1272 |
+
}
|
1273 |
+
}
|
1274 |
+
layer {
|
1275 |
+
name: "conv6_2_mbox_conf"
|
1276 |
+
type: "Convolution"
|
1277 |
+
bottom: "conv6_2_h"
|
1278 |
+
top: "conv6_2_mbox_conf"
|
1279 |
+
param {
|
1280 |
+
lr_mult: 1
|
1281 |
+
decay_mult: 1
|
1282 |
+
}
|
1283 |
+
param {
|
1284 |
+
lr_mult: 2
|
1285 |
+
decay_mult: 0
|
1286 |
+
}
|
1287 |
+
convolution_param {
|
1288 |
+
num_output: 12 # 126
|
1289 |
+
pad: 1
|
1290 |
+
kernel_size: 3
|
1291 |
+
stride: 1
|
1292 |
+
weight_filler {
|
1293 |
+
type: "xavier"
|
1294 |
+
}
|
1295 |
+
bias_filler {
|
1296 |
+
type: "constant"
|
1297 |
+
value: 0
|
1298 |
+
}
|
1299 |
+
}
|
1300 |
+
}
|
1301 |
+
layer {
|
1302 |
+
name: "conv6_2_mbox_conf_perm"
|
1303 |
+
type: "Permute"
|
1304 |
+
bottom: "conv6_2_mbox_conf"
|
1305 |
+
top: "conv6_2_mbox_conf_perm"
|
1306 |
+
permute_param {
|
1307 |
+
order: 0
|
1308 |
+
order: 2
|
1309 |
+
order: 3
|
1310 |
+
order: 1
|
1311 |
+
}
|
1312 |
+
}
|
1313 |
+
layer {
|
1314 |
+
name: "conv6_2_mbox_conf_flat"
|
1315 |
+
type: "Flatten"
|
1316 |
+
bottom: "conv6_2_mbox_conf_perm"
|
1317 |
+
top: "conv6_2_mbox_conf_flat"
|
1318 |
+
flatten_param {
|
1319 |
+
axis: 1
|
1320 |
+
}
|
1321 |
+
}
|
1322 |
+
layer {
|
1323 |
+
name: "conv6_2_mbox_priorbox"
|
1324 |
+
type: "PriorBox"
|
1325 |
+
bottom: "conv6_2_h"
|
1326 |
+
bottom: "data"
|
1327 |
+
top: "conv6_2_mbox_priorbox"
|
1328 |
+
prior_box_param {
|
1329 |
+
min_size: 111.0
|
1330 |
+
max_size: 162.0
|
1331 |
+
aspect_ratio: 2
|
1332 |
+
aspect_ratio: 3
|
1333 |
+
flip: true
|
1334 |
+
clip: false
|
1335 |
+
variance: 0.1
|
1336 |
+
variance: 0.1
|
1337 |
+
variance: 0.2
|
1338 |
+
variance: 0.2
|
1339 |
+
step: 32
|
1340 |
+
offset: 0.5
|
1341 |
+
}
|
1342 |
+
}
|
1343 |
+
layer {
|
1344 |
+
name: "conv7_2_mbox_loc"
|
1345 |
+
type: "Convolution"
|
1346 |
+
bottom: "conv7_2_h"
|
1347 |
+
top: "conv7_2_mbox_loc"
|
1348 |
+
param {
|
1349 |
+
lr_mult: 1
|
1350 |
+
decay_mult: 1
|
1351 |
+
}
|
1352 |
+
param {
|
1353 |
+
lr_mult: 2
|
1354 |
+
decay_mult: 0
|
1355 |
+
}
|
1356 |
+
convolution_param {
|
1357 |
+
num_output: 24
|
1358 |
+
pad: 1
|
1359 |
+
kernel_size: 3
|
1360 |
+
stride: 1
|
1361 |
+
weight_filler {
|
1362 |
+
type: "xavier"
|
1363 |
+
}
|
1364 |
+
bias_filler {
|
1365 |
+
type: "constant"
|
1366 |
+
value: 0
|
1367 |
+
}
|
1368 |
+
}
|
1369 |
+
}
|
1370 |
+
layer {
|
1371 |
+
name: "conv7_2_mbox_loc_perm"
|
1372 |
+
type: "Permute"
|
1373 |
+
bottom: "conv7_2_mbox_loc"
|
1374 |
+
top: "conv7_2_mbox_loc_perm"
|
1375 |
+
permute_param {
|
1376 |
+
order: 0
|
1377 |
+
order: 2
|
1378 |
+
order: 3
|
1379 |
+
order: 1
|
1380 |
+
}
|
1381 |
+
}
|
1382 |
+
layer {
|
1383 |
+
name: "conv7_2_mbox_loc_flat"
|
1384 |
+
type: "Flatten"
|
1385 |
+
bottom: "conv7_2_mbox_loc_perm"
|
1386 |
+
top: "conv7_2_mbox_loc_flat"
|
1387 |
+
flatten_param {
|
1388 |
+
axis: 1
|
1389 |
+
}
|
1390 |
+
}
|
1391 |
+
layer {
|
1392 |
+
name: "conv7_2_mbox_conf"
|
1393 |
+
type: "Convolution"
|
1394 |
+
bottom: "conv7_2_h"
|
1395 |
+
top: "conv7_2_mbox_conf"
|
1396 |
+
param {
|
1397 |
+
lr_mult: 1
|
1398 |
+
decay_mult: 1
|
1399 |
+
}
|
1400 |
+
param {
|
1401 |
+
lr_mult: 2
|
1402 |
+
decay_mult: 0
|
1403 |
+
}
|
1404 |
+
convolution_param {
|
1405 |
+
num_output: 12 # 126
|
1406 |
+
pad: 1
|
1407 |
+
kernel_size: 3
|
1408 |
+
stride: 1
|
1409 |
+
weight_filler {
|
1410 |
+
type: "xavier"
|
1411 |
+
}
|
1412 |
+
bias_filler {
|
1413 |
+
type: "constant"
|
1414 |
+
value: 0
|
1415 |
+
}
|
1416 |
+
}
|
1417 |
+
}
|
1418 |
+
layer {
|
1419 |
+
name: "conv7_2_mbox_conf_perm"
|
1420 |
+
type: "Permute"
|
1421 |
+
bottom: "conv7_2_mbox_conf"
|
1422 |
+
top: "conv7_2_mbox_conf_perm"
|
1423 |
+
permute_param {
|
1424 |
+
order: 0
|
1425 |
+
order: 2
|
1426 |
+
order: 3
|
1427 |
+
order: 1
|
1428 |
+
}
|
1429 |
+
}
|
1430 |
+
layer {
|
1431 |
+
name: "conv7_2_mbox_conf_flat"
|
1432 |
+
type: "Flatten"
|
1433 |
+
bottom: "conv7_2_mbox_conf_perm"
|
1434 |
+
top: "conv7_2_mbox_conf_flat"
|
1435 |
+
flatten_param {
|
1436 |
+
axis: 1
|
1437 |
+
}
|
1438 |
+
}
|
1439 |
+
layer {
|
1440 |
+
name: "conv7_2_mbox_priorbox"
|
1441 |
+
type: "PriorBox"
|
1442 |
+
bottom: "conv7_2_h"
|
1443 |
+
bottom: "data"
|
1444 |
+
top: "conv7_2_mbox_priorbox"
|
1445 |
+
prior_box_param {
|
1446 |
+
min_size: 162.0
|
1447 |
+
max_size: 213.0
|
1448 |
+
aspect_ratio: 2
|
1449 |
+
aspect_ratio: 3
|
1450 |
+
flip: true
|
1451 |
+
clip: false
|
1452 |
+
variance: 0.1
|
1453 |
+
variance: 0.1
|
1454 |
+
variance: 0.2
|
1455 |
+
variance: 0.2
|
1456 |
+
step: 64
|
1457 |
+
offset: 0.5
|
1458 |
+
}
|
1459 |
+
}
|
1460 |
+
layer {
|
1461 |
+
name: "conv8_2_mbox_loc"
|
1462 |
+
type: "Convolution"
|
1463 |
+
bottom: "conv8_2_h"
|
1464 |
+
top: "conv8_2_mbox_loc"
|
1465 |
+
param {
|
1466 |
+
lr_mult: 1
|
1467 |
+
decay_mult: 1
|
1468 |
+
}
|
1469 |
+
param {
|
1470 |
+
lr_mult: 2
|
1471 |
+
decay_mult: 0
|
1472 |
+
}
|
1473 |
+
convolution_param {
|
1474 |
+
num_output: 16
|
1475 |
+
pad: 1
|
1476 |
+
kernel_size: 3
|
1477 |
+
stride: 1
|
1478 |
+
weight_filler {
|
1479 |
+
type: "xavier"
|
1480 |
+
}
|
1481 |
+
bias_filler {
|
1482 |
+
type: "constant"
|
1483 |
+
value: 0
|
1484 |
+
}
|
1485 |
+
}
|
1486 |
+
}
|
1487 |
+
layer {
|
1488 |
+
name: "conv8_2_mbox_loc_perm"
|
1489 |
+
type: "Permute"
|
1490 |
+
bottom: "conv8_2_mbox_loc"
|
1491 |
+
top: "conv8_2_mbox_loc_perm"
|
1492 |
+
permute_param {
|
1493 |
+
order: 0
|
1494 |
+
order: 2
|
1495 |
+
order: 3
|
1496 |
+
order: 1
|
1497 |
+
}
|
1498 |
+
}
|
1499 |
+
layer {
|
1500 |
+
name: "conv8_2_mbox_loc_flat"
|
1501 |
+
type: "Flatten"
|
1502 |
+
bottom: "conv8_2_mbox_loc_perm"
|
1503 |
+
top: "conv8_2_mbox_loc_flat"
|
1504 |
+
flatten_param {
|
1505 |
+
axis: 1
|
1506 |
+
}
|
1507 |
+
}
|
1508 |
+
layer {
|
1509 |
+
name: "conv8_2_mbox_conf"
|
1510 |
+
type: "Convolution"
|
1511 |
+
bottom: "conv8_2_h"
|
1512 |
+
top: "conv8_2_mbox_conf"
|
1513 |
+
param {
|
1514 |
+
lr_mult: 1
|
1515 |
+
decay_mult: 1
|
1516 |
+
}
|
1517 |
+
param {
|
1518 |
+
lr_mult: 2
|
1519 |
+
decay_mult: 0
|
1520 |
+
}
|
1521 |
+
convolution_param {
|
1522 |
+
num_output: 8 # 84
|
1523 |
+
pad: 1
|
1524 |
+
kernel_size: 3
|
1525 |
+
stride: 1
|
1526 |
+
weight_filler {
|
1527 |
+
type: "xavier"
|
1528 |
+
}
|
1529 |
+
bias_filler {
|
1530 |
+
type: "constant"
|
1531 |
+
value: 0
|
1532 |
+
}
|
1533 |
+
}
|
1534 |
+
}
|
1535 |
+
layer {
|
1536 |
+
name: "conv8_2_mbox_conf_perm"
|
1537 |
+
type: "Permute"
|
1538 |
+
bottom: "conv8_2_mbox_conf"
|
1539 |
+
top: "conv8_2_mbox_conf_perm"
|
1540 |
+
permute_param {
|
1541 |
+
order: 0
|
1542 |
+
order: 2
|
1543 |
+
order: 3
|
1544 |
+
order: 1
|
1545 |
+
}
|
1546 |
+
}
|
1547 |
+
layer {
|
1548 |
+
name: "conv8_2_mbox_conf_flat"
|
1549 |
+
type: "Flatten"
|
1550 |
+
bottom: "conv8_2_mbox_conf_perm"
|
1551 |
+
top: "conv8_2_mbox_conf_flat"
|
1552 |
+
flatten_param {
|
1553 |
+
axis: 1
|
1554 |
+
}
|
1555 |
+
}
|
1556 |
+
layer {
|
1557 |
+
name: "conv8_2_mbox_priorbox"
|
1558 |
+
type: "PriorBox"
|
1559 |
+
bottom: "conv8_2_h"
|
1560 |
+
bottom: "data"
|
1561 |
+
top: "conv8_2_mbox_priorbox"
|
1562 |
+
prior_box_param {
|
1563 |
+
min_size: 213.0
|
1564 |
+
max_size: 264.0
|
1565 |
+
aspect_ratio: 2
|
1566 |
+
flip: true
|
1567 |
+
clip: false
|
1568 |
+
variance: 0.1
|
1569 |
+
variance: 0.1
|
1570 |
+
variance: 0.2
|
1571 |
+
variance: 0.2
|
1572 |
+
step: 100
|
1573 |
+
offset: 0.5
|
1574 |
+
}
|
1575 |
+
}
|
1576 |
+
layer {
|
1577 |
+
name: "conv9_2_mbox_loc"
|
1578 |
+
type: "Convolution"
|
1579 |
+
bottom: "conv9_2_h"
|
1580 |
+
top: "conv9_2_mbox_loc"
|
1581 |
+
param {
|
1582 |
+
lr_mult: 1
|
1583 |
+
decay_mult: 1
|
1584 |
+
}
|
1585 |
+
param {
|
1586 |
+
lr_mult: 2
|
1587 |
+
decay_mult: 0
|
1588 |
+
}
|
1589 |
+
convolution_param {
|
1590 |
+
num_output: 16
|
1591 |
+
pad: 1
|
1592 |
+
kernel_size: 3
|
1593 |
+
stride: 1
|
1594 |
+
weight_filler {
|
1595 |
+
type: "xavier"
|
1596 |
+
}
|
1597 |
+
bias_filler {
|
1598 |
+
type: "constant"
|
1599 |
+
value: 0
|
1600 |
+
}
|
1601 |
+
}
|
1602 |
+
}
|
1603 |
+
layer {
|
1604 |
+
name: "conv9_2_mbox_loc_perm"
|
1605 |
+
type: "Permute"
|
1606 |
+
bottom: "conv9_2_mbox_loc"
|
1607 |
+
top: "conv9_2_mbox_loc_perm"
|
1608 |
+
permute_param {
|
1609 |
+
order: 0
|
1610 |
+
order: 2
|
1611 |
+
order: 3
|
1612 |
+
order: 1
|
1613 |
+
}
|
1614 |
+
}
|
1615 |
+
layer {
|
1616 |
+
name: "conv9_2_mbox_loc_flat"
|
1617 |
+
type: "Flatten"
|
1618 |
+
bottom: "conv9_2_mbox_loc_perm"
|
1619 |
+
top: "conv9_2_mbox_loc_flat"
|
1620 |
+
flatten_param {
|
1621 |
+
axis: 1
|
1622 |
+
}
|
1623 |
+
}
|
1624 |
+
layer {
|
1625 |
+
name: "conv9_2_mbox_conf"
|
1626 |
+
type: "Convolution"
|
1627 |
+
bottom: "conv9_2_h"
|
1628 |
+
top: "conv9_2_mbox_conf"
|
1629 |
+
param {
|
1630 |
+
lr_mult: 1
|
1631 |
+
decay_mult: 1
|
1632 |
+
}
|
1633 |
+
param {
|
1634 |
+
lr_mult: 2
|
1635 |
+
decay_mult: 0
|
1636 |
+
}
|
1637 |
+
convolution_param {
|
1638 |
+
num_output: 8 # 84
|
1639 |
+
pad: 1
|
1640 |
+
kernel_size: 3
|
1641 |
+
stride: 1
|
1642 |
+
weight_filler {
|
1643 |
+
type: "xavier"
|
1644 |
+
}
|
1645 |
+
bias_filler {
|
1646 |
+
type: "constant"
|
1647 |
+
value: 0
|
1648 |
+
}
|
1649 |
+
}
|
1650 |
+
}
|
1651 |
+
layer {
|
1652 |
+
name: "conv9_2_mbox_conf_perm"
|
1653 |
+
type: "Permute"
|
1654 |
+
bottom: "conv9_2_mbox_conf"
|
1655 |
+
top: "conv9_2_mbox_conf_perm"
|
1656 |
+
permute_param {
|
1657 |
+
order: 0
|
1658 |
+
order: 2
|
1659 |
+
order: 3
|
1660 |
+
order: 1
|
1661 |
+
}
|
1662 |
+
}
|
1663 |
+
layer {
|
1664 |
+
name: "conv9_2_mbox_conf_flat"
|
1665 |
+
type: "Flatten"
|
1666 |
+
bottom: "conv9_2_mbox_conf_perm"
|
1667 |
+
top: "conv9_2_mbox_conf_flat"
|
1668 |
+
flatten_param {
|
1669 |
+
axis: 1
|
1670 |
+
}
|
1671 |
+
}
|
1672 |
+
layer {
|
1673 |
+
name: "conv9_2_mbox_priorbox"
|
1674 |
+
type: "PriorBox"
|
1675 |
+
bottom: "conv9_2_h"
|
1676 |
+
bottom: "data"
|
1677 |
+
top: "conv9_2_mbox_priorbox"
|
1678 |
+
prior_box_param {
|
1679 |
+
min_size: 264.0
|
1680 |
+
max_size: 315.0
|
1681 |
+
aspect_ratio: 2
|
1682 |
+
flip: true
|
1683 |
+
clip: false
|
1684 |
+
variance: 0.1
|
1685 |
+
variance: 0.1
|
1686 |
+
variance: 0.2
|
1687 |
+
variance: 0.2
|
1688 |
+
step: 300
|
1689 |
+
offset: 0.5
|
1690 |
+
}
|
1691 |
+
}
|
1692 |
+
layer {
|
1693 |
+
name: "mbox_loc"
|
1694 |
+
type: "Concat"
|
1695 |
+
bottom: "conv4_3_norm_mbox_loc_flat"
|
1696 |
+
bottom: "fc7_mbox_loc_flat"
|
1697 |
+
bottom: "conv6_2_mbox_loc_flat"
|
1698 |
+
bottom: "conv7_2_mbox_loc_flat"
|
1699 |
+
bottom: "conv8_2_mbox_loc_flat"
|
1700 |
+
bottom: "conv9_2_mbox_loc_flat"
|
1701 |
+
top: "mbox_loc"
|
1702 |
+
concat_param {
|
1703 |
+
axis: 1
|
1704 |
+
}
|
1705 |
+
}
|
1706 |
+
layer {
|
1707 |
+
name: "mbox_conf"
|
1708 |
+
type: "Concat"
|
1709 |
+
bottom: "conv4_3_norm_mbox_conf_flat"
|
1710 |
+
bottom: "fc7_mbox_conf_flat"
|
1711 |
+
bottom: "conv6_2_mbox_conf_flat"
|
1712 |
+
bottom: "conv7_2_mbox_conf_flat"
|
1713 |
+
bottom: "conv8_2_mbox_conf_flat"
|
1714 |
+
bottom: "conv9_2_mbox_conf_flat"
|
1715 |
+
top: "mbox_conf"
|
1716 |
+
concat_param {
|
1717 |
+
axis: 1
|
1718 |
+
}
|
1719 |
+
}
|
1720 |
+
layer {
|
1721 |
+
name: "mbox_priorbox"
|
1722 |
+
type: "Concat"
|
1723 |
+
bottom: "conv4_3_norm_mbox_priorbox"
|
1724 |
+
bottom: "fc7_mbox_priorbox"
|
1725 |
+
bottom: "conv6_2_mbox_priorbox"
|
1726 |
+
bottom: "conv7_2_mbox_priorbox"
|
1727 |
+
bottom: "conv8_2_mbox_priorbox"
|
1728 |
+
bottom: "conv9_2_mbox_priorbox"
|
1729 |
+
top: "mbox_priorbox"
|
1730 |
+
concat_param {
|
1731 |
+
axis: 2
|
1732 |
+
}
|
1733 |
+
}
|
1734 |
+
|
1735 |
+
layer {
|
1736 |
+
name: "mbox_conf_reshape"
|
1737 |
+
type: "Reshape"
|
1738 |
+
bottom: "mbox_conf"
|
1739 |
+
top: "mbox_conf_reshape"
|
1740 |
+
reshape_param {
|
1741 |
+
shape {
|
1742 |
+
dim: 0
|
1743 |
+
dim: -1
|
1744 |
+
dim: 2
|
1745 |
+
}
|
1746 |
+
}
|
1747 |
+
}
|
1748 |
+
layer {
|
1749 |
+
name: "mbox_conf_softmax"
|
1750 |
+
type: "Softmax"
|
1751 |
+
bottom: "mbox_conf_reshape"
|
1752 |
+
top: "mbox_conf_softmax"
|
1753 |
+
softmax_param {
|
1754 |
+
axis: 2
|
1755 |
+
}
|
1756 |
+
}
|
1757 |
+
layer {
|
1758 |
+
name: "mbox_conf_flatten"
|
1759 |
+
type: "Flatten"
|
1760 |
+
bottom: "mbox_conf_softmax"
|
1761 |
+
top: "mbox_conf_flatten"
|
1762 |
+
flatten_param {
|
1763 |
+
axis: 1
|
1764 |
+
}
|
1765 |
+
}
|
1766 |
+
|
1767 |
+
layer {
|
1768 |
+
name: "detection_out"
|
1769 |
+
type: "DetectionOutput"
|
1770 |
+
bottom: "mbox_loc"
|
1771 |
+
bottom: "mbox_conf_flatten"
|
1772 |
+
bottom: "mbox_priorbox"
|
1773 |
+
top: "detection_out"
|
1774 |
+
include {
|
1775 |
+
phase: TEST
|
1776 |
+
}
|
1777 |
+
detection_output_param {
|
1778 |
+
num_classes: 2
|
1779 |
+
share_location: true
|
1780 |
+
background_label_id: 0
|
1781 |
+
nms_param {
|
1782 |
+
nms_threshold: 0.45
|
1783 |
+
top_k: 400
|
1784 |
+
}
|
1785 |
+
code_type: CENTER_SIZE
|
1786 |
+
keep_top_k: 200
|
1787 |
+
confidence_threshold: 0.01
|
1788 |
+
}
|
1789 |
+
}
|
model files/face detection model/readme.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
This model can detect face in any frame or person image.
|
model files/face detection model/res10_300x300_ssd_iter_140000.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a56a11a57a4a295956b0660b4a3d76bbdca2206c4961cea8efe7d95c7cb2f2d
|
3 |
+
size 10666211
|
model files/face mask detection model/mask_detector.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a62288c0832df0fad0e97b881b5268d3deb40ec372611b7d81c913715799af00
|
3 |
+
size 11483536
|
model files/generic object detection model/MobileNetSSD_deploy.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:761c86fbae3d8361dd454f7c740a964f62975ed32f4324b8b85994edec30f6af
|
3 |
+
size 23147564
|
model files/generic object detection model/MobileNetSSD_deploy.prototxt
ADDED
@@ -0,0 +1,1912 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: "MobileNet-SSD"
|
2 |
+
input: "data"
|
3 |
+
input_shape {
|
4 |
+
dim: 1
|
5 |
+
dim: 3
|
6 |
+
dim: 300
|
7 |
+
dim: 300
|
8 |
+
}
|
9 |
+
layer {
|
10 |
+
name: "conv0"
|
11 |
+
type: "Convolution"
|
12 |
+
bottom: "data"
|
13 |
+
top: "conv0"
|
14 |
+
param {
|
15 |
+
lr_mult: 1.0
|
16 |
+
decay_mult: 1.0
|
17 |
+
}
|
18 |
+
param {
|
19 |
+
lr_mult: 2.0
|
20 |
+
decay_mult: 0.0
|
21 |
+
}
|
22 |
+
convolution_param {
|
23 |
+
num_output: 32
|
24 |
+
pad: 1
|
25 |
+
kernel_size: 3
|
26 |
+
stride: 2
|
27 |
+
weight_filler {
|
28 |
+
type: "msra"
|
29 |
+
}
|
30 |
+
bias_filler {
|
31 |
+
type: "constant"
|
32 |
+
value: 0.0
|
33 |
+
}
|
34 |
+
}
|
35 |
+
}
|
36 |
+
layer {
|
37 |
+
name: "conv0/relu"
|
38 |
+
type: "ReLU"
|
39 |
+
bottom: "conv0"
|
40 |
+
top: "conv0"
|
41 |
+
}
|
42 |
+
layer {
|
43 |
+
name: "conv1/dw"
|
44 |
+
type: "Convolution"
|
45 |
+
bottom: "conv0"
|
46 |
+
top: "conv1/dw"
|
47 |
+
param {
|
48 |
+
lr_mult: 1.0
|
49 |
+
decay_mult: 1.0
|
50 |
+
}
|
51 |
+
param {
|
52 |
+
lr_mult: 2.0
|
53 |
+
decay_mult: 0.0
|
54 |
+
}
|
55 |
+
convolution_param {
|
56 |
+
num_output: 32
|
57 |
+
pad: 1
|
58 |
+
kernel_size: 3
|
59 |
+
group: 32
|
60 |
+
engine: CAFFE
|
61 |
+
weight_filler {
|
62 |
+
type: "msra"
|
63 |
+
}
|
64 |
+
bias_filler {
|
65 |
+
type: "constant"
|
66 |
+
value: 0.0
|
67 |
+
}
|
68 |
+
}
|
69 |
+
}
|
70 |
+
layer {
|
71 |
+
name: "conv1/dw/relu"
|
72 |
+
type: "ReLU"
|
73 |
+
bottom: "conv1/dw"
|
74 |
+
top: "conv1/dw"
|
75 |
+
}
|
76 |
+
layer {
|
77 |
+
name: "conv1"
|
78 |
+
type: "Convolution"
|
79 |
+
bottom: "conv1/dw"
|
80 |
+
top: "conv1"
|
81 |
+
param {
|
82 |
+
lr_mult: 1.0
|
83 |
+
decay_mult: 1.0
|
84 |
+
}
|
85 |
+
param {
|
86 |
+
lr_mult: 2.0
|
87 |
+
decay_mult: 0.0
|
88 |
+
}
|
89 |
+
convolution_param {
|
90 |
+
num_output: 64
|
91 |
+
kernel_size: 1
|
92 |
+
weight_filler {
|
93 |
+
type: "msra"
|
94 |
+
}
|
95 |
+
bias_filler {
|
96 |
+
type: "constant"
|
97 |
+
value: 0.0
|
98 |
+
}
|
99 |
+
}
|
100 |
+
}
|
101 |
+
layer {
|
102 |
+
name: "conv1/relu"
|
103 |
+
type: "ReLU"
|
104 |
+
bottom: "conv1"
|
105 |
+
top: "conv1"
|
106 |
+
}
|
107 |
+
layer {
|
108 |
+
name: "conv2/dw"
|
109 |
+
type: "Convolution"
|
110 |
+
bottom: "conv1"
|
111 |
+
top: "conv2/dw"
|
112 |
+
param {
|
113 |
+
lr_mult: 1.0
|
114 |
+
decay_mult: 1.0
|
115 |
+
}
|
116 |
+
param {
|
117 |
+
lr_mult: 2.0
|
118 |
+
decay_mult: 0.0
|
119 |
+
}
|
120 |
+
convolution_param {
|
121 |
+
num_output: 64
|
122 |
+
pad: 1
|
123 |
+
kernel_size: 3
|
124 |
+
stride: 2
|
125 |
+
group: 64
|
126 |
+
engine: CAFFE
|
127 |
+
weight_filler {
|
128 |
+
type: "msra"
|
129 |
+
}
|
130 |
+
bias_filler {
|
131 |
+
type: "constant"
|
132 |
+
value: 0.0
|
133 |
+
}
|
134 |
+
}
|
135 |
+
}
|
136 |
+
layer {
|
137 |
+
name: "conv2/dw/relu"
|
138 |
+
type: "ReLU"
|
139 |
+
bottom: "conv2/dw"
|
140 |
+
top: "conv2/dw"
|
141 |
+
}
|
142 |
+
layer {
|
143 |
+
name: "conv2"
|
144 |
+
type: "Convolution"
|
145 |
+
bottom: "conv2/dw"
|
146 |
+
top: "conv2"
|
147 |
+
param {
|
148 |
+
lr_mult: 1.0
|
149 |
+
decay_mult: 1.0
|
150 |
+
}
|
151 |
+
param {
|
152 |
+
lr_mult: 2.0
|
153 |
+
decay_mult: 0.0
|
154 |
+
}
|
155 |
+
convolution_param {
|
156 |
+
num_output: 128
|
157 |
+
kernel_size: 1
|
158 |
+
weight_filler {
|
159 |
+
type: "msra"
|
160 |
+
}
|
161 |
+
bias_filler {
|
162 |
+
type: "constant"
|
163 |
+
value: 0.0
|
164 |
+
}
|
165 |
+
}
|
166 |
+
}
|
167 |
+
layer {
|
168 |
+
name: "conv2/relu"
|
169 |
+
type: "ReLU"
|
170 |
+
bottom: "conv2"
|
171 |
+
top: "conv2"
|
172 |
+
}
|
173 |
+
layer {
|
174 |
+
name: "conv3/dw"
|
175 |
+
type: "Convolution"
|
176 |
+
bottom: "conv2"
|
177 |
+
top: "conv3/dw"
|
178 |
+
param {
|
179 |
+
lr_mult: 1.0
|
180 |
+
decay_mult: 1.0
|
181 |
+
}
|
182 |
+
param {
|
183 |
+
lr_mult: 2.0
|
184 |
+
decay_mult: 0.0
|
185 |
+
}
|
186 |
+
convolution_param {
|
187 |
+
num_output: 128
|
188 |
+
pad: 1
|
189 |
+
kernel_size: 3
|
190 |
+
group: 128
|
191 |
+
engine: CAFFE
|
192 |
+
weight_filler {
|
193 |
+
type: "msra"
|
194 |
+
}
|
195 |
+
bias_filler {
|
196 |
+
type: "constant"
|
197 |
+
value: 0.0
|
198 |
+
}
|
199 |
+
}
|
200 |
+
}
|
201 |
+
layer {
|
202 |
+
name: "conv3/dw/relu"
|
203 |
+
type: "ReLU"
|
204 |
+
bottom: "conv3/dw"
|
205 |
+
top: "conv3/dw"
|
206 |
+
}
|
207 |
+
layer {
|
208 |
+
name: "conv3"
|
209 |
+
type: "Convolution"
|
210 |
+
bottom: "conv3/dw"
|
211 |
+
top: "conv3"
|
212 |
+
param {
|
213 |
+
lr_mult: 1.0
|
214 |
+
decay_mult: 1.0
|
215 |
+
}
|
216 |
+
param {
|
217 |
+
lr_mult: 2.0
|
218 |
+
decay_mult: 0.0
|
219 |
+
}
|
220 |
+
convolution_param {
|
221 |
+
num_output: 128
|
222 |
+
kernel_size: 1
|
223 |
+
weight_filler {
|
224 |
+
type: "msra"
|
225 |
+
}
|
226 |
+
bias_filler {
|
227 |
+
type: "constant"
|
228 |
+
value: 0.0
|
229 |
+
}
|
230 |
+
}
|
231 |
+
}
|
232 |
+
layer {
|
233 |
+
name: "conv3/relu"
|
234 |
+
type: "ReLU"
|
235 |
+
bottom: "conv3"
|
236 |
+
top: "conv3"
|
237 |
+
}
|
238 |
+
layer {
|
239 |
+
name: "conv4/dw"
|
240 |
+
type: "Convolution"
|
241 |
+
bottom: "conv3"
|
242 |
+
top: "conv4/dw"
|
243 |
+
param {
|
244 |
+
lr_mult: 1.0
|
245 |
+
decay_mult: 1.0
|
246 |
+
}
|
247 |
+
param {
|
248 |
+
lr_mult: 2.0
|
249 |
+
decay_mult: 0.0
|
250 |
+
}
|
251 |
+
convolution_param {
|
252 |
+
num_output: 128
|
253 |
+
pad: 1
|
254 |
+
kernel_size: 3
|
255 |
+
stride: 2
|
256 |
+
group: 128
|
257 |
+
engine: CAFFE
|
258 |
+
weight_filler {
|
259 |
+
type: "msra"
|
260 |
+
}
|
261 |
+
bias_filler {
|
262 |
+
type: "constant"
|
263 |
+
value: 0.0
|
264 |
+
}
|
265 |
+
}
|
266 |
+
}
|
267 |
+
layer {
|
268 |
+
name: "conv4/dw/relu"
|
269 |
+
type: "ReLU"
|
270 |
+
bottom: "conv4/dw"
|
271 |
+
top: "conv4/dw"
|
272 |
+
}
|
273 |
+
layer {
|
274 |
+
name: "conv4"
|
275 |
+
type: "Convolution"
|
276 |
+
bottom: "conv4/dw"
|
277 |
+
top: "conv4"
|
278 |
+
param {
|
279 |
+
lr_mult: 1.0
|
280 |
+
decay_mult: 1.0
|
281 |
+
}
|
282 |
+
param {
|
283 |
+
lr_mult: 2.0
|
284 |
+
decay_mult: 0.0
|
285 |
+
}
|
286 |
+
convolution_param {
|
287 |
+
num_output: 256
|
288 |
+
kernel_size: 1
|
289 |
+
weight_filler {
|
290 |
+
type: "msra"
|
291 |
+
}
|
292 |
+
bias_filler {
|
293 |
+
type: "constant"
|
294 |
+
value: 0.0
|
295 |
+
}
|
296 |
+
}
|
297 |
+
}
|
298 |
+
layer {
|
299 |
+
name: "conv4/relu"
|
300 |
+
type: "ReLU"
|
301 |
+
bottom: "conv4"
|
302 |
+
top: "conv4"
|
303 |
+
}
|
304 |
+
layer {
|
305 |
+
name: "conv5/dw"
|
306 |
+
type: "Convolution"
|
307 |
+
bottom: "conv4"
|
308 |
+
top: "conv5/dw"
|
309 |
+
param {
|
310 |
+
lr_mult: 1.0
|
311 |
+
decay_mult: 1.0
|
312 |
+
}
|
313 |
+
param {
|
314 |
+
lr_mult: 2.0
|
315 |
+
decay_mult: 0.0
|
316 |
+
}
|
317 |
+
convolution_param {
|
318 |
+
num_output: 256
|
319 |
+
pad: 1
|
320 |
+
kernel_size: 3
|
321 |
+
group: 256
|
322 |
+
engine: CAFFE
|
323 |
+
weight_filler {
|
324 |
+
type: "msra"
|
325 |
+
}
|
326 |
+
bias_filler {
|
327 |
+
type: "constant"
|
328 |
+
value: 0.0
|
329 |
+
}
|
330 |
+
}
|
331 |
+
}
|
332 |
+
layer {
|
333 |
+
name: "conv5/dw/relu"
|
334 |
+
type: "ReLU"
|
335 |
+
bottom: "conv5/dw"
|
336 |
+
top: "conv5/dw"
|
337 |
+
}
|
338 |
+
layer {
|
339 |
+
name: "conv5"
|
340 |
+
type: "Convolution"
|
341 |
+
bottom: "conv5/dw"
|
342 |
+
top: "conv5"
|
343 |
+
param {
|
344 |
+
lr_mult: 1.0
|
345 |
+
decay_mult: 1.0
|
346 |
+
}
|
347 |
+
param {
|
348 |
+
lr_mult: 2.0
|
349 |
+
decay_mult: 0.0
|
350 |
+
}
|
351 |
+
convolution_param {
|
352 |
+
num_output: 256
|
353 |
+
kernel_size: 1
|
354 |
+
weight_filler {
|
355 |
+
type: "msra"
|
356 |
+
}
|
357 |
+
bias_filler {
|
358 |
+
type: "constant"
|
359 |
+
value: 0.0
|
360 |
+
}
|
361 |
+
}
|
362 |
+
}
|
363 |
+
layer {
|
364 |
+
name: "conv5/relu"
|
365 |
+
type: "ReLU"
|
366 |
+
bottom: "conv5"
|
367 |
+
top: "conv5"
|
368 |
+
}
|
369 |
+
layer {
|
370 |
+
name: "conv6/dw"
|
371 |
+
type: "Convolution"
|
372 |
+
bottom: "conv5"
|
373 |
+
top: "conv6/dw"
|
374 |
+
param {
|
375 |
+
lr_mult: 1.0
|
376 |
+
decay_mult: 1.0
|
377 |
+
}
|
378 |
+
param {
|
379 |
+
lr_mult: 2.0
|
380 |
+
decay_mult: 0.0
|
381 |
+
}
|
382 |
+
convolution_param {
|
383 |
+
num_output: 256
|
384 |
+
pad: 1
|
385 |
+
kernel_size: 3
|
386 |
+
stride: 2
|
387 |
+
group: 256
|
388 |
+
engine: CAFFE
|
389 |
+
weight_filler {
|
390 |
+
type: "msra"
|
391 |
+
}
|
392 |
+
bias_filler {
|
393 |
+
type: "constant"
|
394 |
+
value: 0.0
|
395 |
+
}
|
396 |
+
}
|
397 |
+
}
|
398 |
+
layer {
|
399 |
+
name: "conv6/dw/relu"
|
400 |
+
type: "ReLU"
|
401 |
+
bottom: "conv6/dw"
|
402 |
+
top: "conv6/dw"
|
403 |
+
}
|
404 |
+
layer {
|
405 |
+
name: "conv6"
|
406 |
+
type: "Convolution"
|
407 |
+
bottom: "conv6/dw"
|
408 |
+
top: "conv6"
|
409 |
+
param {
|
410 |
+
lr_mult: 1.0
|
411 |
+
decay_mult: 1.0
|
412 |
+
}
|
413 |
+
param {
|
414 |
+
lr_mult: 2.0
|
415 |
+
decay_mult: 0.0
|
416 |
+
}
|
417 |
+
convolution_param {
|
418 |
+
num_output: 512
|
419 |
+
kernel_size: 1
|
420 |
+
weight_filler {
|
421 |
+
type: "msra"
|
422 |
+
}
|
423 |
+
bias_filler {
|
424 |
+
type: "constant"
|
425 |
+
value: 0.0
|
426 |
+
}
|
427 |
+
}
|
428 |
+
}
|
429 |
+
layer {
|
430 |
+
name: "conv6/relu"
|
431 |
+
type: "ReLU"
|
432 |
+
bottom: "conv6"
|
433 |
+
top: "conv6"
|
434 |
+
}
|
435 |
+
layer {
|
436 |
+
name: "conv7/dw"
|
437 |
+
type: "Convolution"
|
438 |
+
bottom: "conv6"
|
439 |
+
top: "conv7/dw"
|
440 |
+
param {
|
441 |
+
lr_mult: 1.0
|
442 |
+
decay_mult: 1.0
|
443 |
+
}
|
444 |
+
param {
|
445 |
+
lr_mult: 2.0
|
446 |
+
decay_mult: 0.0
|
447 |
+
}
|
448 |
+
convolution_param {
|
449 |
+
num_output: 512
|
450 |
+
pad: 1
|
451 |
+
kernel_size: 3
|
452 |
+
group: 512
|
453 |
+
engine: CAFFE
|
454 |
+
weight_filler {
|
455 |
+
type: "msra"
|
456 |
+
}
|
457 |
+
bias_filler {
|
458 |
+
type: "constant"
|
459 |
+
value: 0.0
|
460 |
+
}
|
461 |
+
}
|
462 |
+
}
|
463 |
+
layer {
|
464 |
+
name: "conv7/dw/relu"
|
465 |
+
type: "ReLU"
|
466 |
+
bottom: "conv7/dw"
|
467 |
+
top: "conv7/dw"
|
468 |
+
}
|
469 |
+
layer {
|
470 |
+
name: "conv7"
|
471 |
+
type: "Convolution"
|
472 |
+
bottom: "conv7/dw"
|
473 |
+
top: "conv7"
|
474 |
+
param {
|
475 |
+
lr_mult: 1.0
|
476 |
+
decay_mult: 1.0
|
477 |
+
}
|
478 |
+
param {
|
479 |
+
lr_mult: 2.0
|
480 |
+
decay_mult: 0.0
|
481 |
+
}
|
482 |
+
convolution_param {
|
483 |
+
num_output: 512
|
484 |
+
kernel_size: 1
|
485 |
+
weight_filler {
|
486 |
+
type: "msra"
|
487 |
+
}
|
488 |
+
bias_filler {
|
489 |
+
type: "constant"
|
490 |
+
value: 0.0
|
491 |
+
}
|
492 |
+
}
|
493 |
+
}
|
494 |
+
layer {
|
495 |
+
name: "conv7/relu"
|
496 |
+
type: "ReLU"
|
497 |
+
bottom: "conv7"
|
498 |
+
top: "conv7"
|
499 |
+
}
|
500 |
+
layer {
|
501 |
+
name: "conv8/dw"
|
502 |
+
type: "Convolution"
|
503 |
+
bottom: "conv7"
|
504 |
+
top: "conv8/dw"
|
505 |
+
param {
|
506 |
+
lr_mult: 1.0
|
507 |
+
decay_mult: 1.0
|
508 |
+
}
|
509 |
+
param {
|
510 |
+
lr_mult: 2.0
|
511 |
+
decay_mult: 0.0
|
512 |
+
}
|
513 |
+
convolution_param {
|
514 |
+
num_output: 512
|
515 |
+
pad: 1
|
516 |
+
kernel_size: 3
|
517 |
+
group: 512
|
518 |
+
engine: CAFFE
|
519 |
+
weight_filler {
|
520 |
+
type: "msra"
|
521 |
+
}
|
522 |
+
bias_filler {
|
523 |
+
type: "constant"
|
524 |
+
value: 0.0
|
525 |
+
}
|
526 |
+
}
|
527 |
+
}
|
528 |
+
layer {
|
529 |
+
name: "conv8/dw/relu"
|
530 |
+
type: "ReLU"
|
531 |
+
bottom: "conv8/dw"
|
532 |
+
top: "conv8/dw"
|
533 |
+
}
|
534 |
+
layer {
|
535 |
+
name: "conv8"
|
536 |
+
type: "Convolution"
|
537 |
+
bottom: "conv8/dw"
|
538 |
+
top: "conv8"
|
539 |
+
param {
|
540 |
+
lr_mult: 1.0
|
541 |
+
decay_mult: 1.0
|
542 |
+
}
|
543 |
+
param {
|
544 |
+
lr_mult: 2.0
|
545 |
+
decay_mult: 0.0
|
546 |
+
}
|
547 |
+
convolution_param {
|
548 |
+
num_output: 512
|
549 |
+
kernel_size: 1
|
550 |
+
weight_filler {
|
551 |
+
type: "msra"
|
552 |
+
}
|
553 |
+
bias_filler {
|
554 |
+
type: "constant"
|
555 |
+
value: 0.0
|
556 |
+
}
|
557 |
+
}
|
558 |
+
}
|
559 |
+
layer {
|
560 |
+
name: "conv8/relu"
|
561 |
+
type: "ReLU"
|
562 |
+
bottom: "conv8"
|
563 |
+
top: "conv8"
|
564 |
+
}
|
565 |
+
layer {
|
566 |
+
name: "conv9/dw"
|
567 |
+
type: "Convolution"
|
568 |
+
bottom: "conv8"
|
569 |
+
top: "conv9/dw"
|
570 |
+
param {
|
571 |
+
lr_mult: 1.0
|
572 |
+
decay_mult: 1.0
|
573 |
+
}
|
574 |
+
param {
|
575 |
+
lr_mult: 2.0
|
576 |
+
decay_mult: 0.0
|
577 |
+
}
|
578 |
+
convolution_param {
|
579 |
+
num_output: 512
|
580 |
+
pad: 1
|
581 |
+
kernel_size: 3
|
582 |
+
group: 512
|
583 |
+
engine: CAFFE
|
584 |
+
weight_filler {
|
585 |
+
type: "msra"
|
586 |
+
}
|
587 |
+
bias_filler {
|
588 |
+
type: "constant"
|
589 |
+
value: 0.0
|
590 |
+
}
|
591 |
+
}
|
592 |
+
}
|
593 |
+
layer {
|
594 |
+
name: "conv9/dw/relu"
|
595 |
+
type: "ReLU"
|
596 |
+
bottom: "conv9/dw"
|
597 |
+
top: "conv9/dw"
|
598 |
+
}
|
599 |
+
layer {
|
600 |
+
name: "conv9"
|
601 |
+
type: "Convolution"
|
602 |
+
bottom: "conv9/dw"
|
603 |
+
top: "conv9"
|
604 |
+
param {
|
605 |
+
lr_mult: 1.0
|
606 |
+
decay_mult: 1.0
|
607 |
+
}
|
608 |
+
param {
|
609 |
+
lr_mult: 2.0
|
610 |
+
decay_mult: 0.0
|
611 |
+
}
|
612 |
+
convolution_param {
|
613 |
+
num_output: 512
|
614 |
+
kernel_size: 1
|
615 |
+
weight_filler {
|
616 |
+
type: "msra"
|
617 |
+
}
|
618 |
+
bias_filler {
|
619 |
+
type: "constant"
|
620 |
+
value: 0.0
|
621 |
+
}
|
622 |
+
}
|
623 |
+
}
|
624 |
+
layer {
|
625 |
+
name: "conv9/relu"
|
626 |
+
type: "ReLU"
|
627 |
+
bottom: "conv9"
|
628 |
+
top: "conv9"
|
629 |
+
}
|
630 |
+
layer {
|
631 |
+
name: "conv10/dw"
|
632 |
+
type: "Convolution"
|
633 |
+
bottom: "conv9"
|
634 |
+
top: "conv10/dw"
|
635 |
+
param {
|
636 |
+
lr_mult: 1.0
|
637 |
+
decay_mult: 1.0
|
638 |
+
}
|
639 |
+
param {
|
640 |
+
lr_mult: 2.0
|
641 |
+
decay_mult: 0.0
|
642 |
+
}
|
643 |
+
convolution_param {
|
644 |
+
num_output: 512
|
645 |
+
pad: 1
|
646 |
+
kernel_size: 3
|
647 |
+
group: 512
|
648 |
+
engine: CAFFE
|
649 |
+
weight_filler {
|
650 |
+
type: "msra"
|
651 |
+
}
|
652 |
+
bias_filler {
|
653 |
+
type: "constant"
|
654 |
+
value: 0.0
|
655 |
+
}
|
656 |
+
}
|
657 |
+
}
|
658 |
+
layer {
|
659 |
+
name: "conv10/dw/relu"
|
660 |
+
type: "ReLU"
|
661 |
+
bottom: "conv10/dw"
|
662 |
+
top: "conv10/dw"
|
663 |
+
}
|
664 |
+
layer {
|
665 |
+
name: "conv10"
|
666 |
+
type: "Convolution"
|
667 |
+
bottom: "conv10/dw"
|
668 |
+
top: "conv10"
|
669 |
+
param {
|
670 |
+
lr_mult: 1.0
|
671 |
+
decay_mult: 1.0
|
672 |
+
}
|
673 |
+
param {
|
674 |
+
lr_mult: 2.0
|
675 |
+
decay_mult: 0.0
|
676 |
+
}
|
677 |
+
convolution_param {
|
678 |
+
num_output: 512
|
679 |
+
kernel_size: 1
|
680 |
+
weight_filler {
|
681 |
+
type: "msra"
|
682 |
+
}
|
683 |
+
bias_filler {
|
684 |
+
type: "constant"
|
685 |
+
value: 0.0
|
686 |
+
}
|
687 |
+
}
|
688 |
+
}
|
689 |
+
layer {
|
690 |
+
name: "conv10/relu"
|
691 |
+
type: "ReLU"
|
692 |
+
bottom: "conv10"
|
693 |
+
top: "conv10"
|
694 |
+
}
|
695 |
+
layer {
|
696 |
+
name: "conv11/dw"
|
697 |
+
type: "Convolution"
|
698 |
+
bottom: "conv10"
|
699 |
+
top: "conv11/dw"
|
700 |
+
param {
|
701 |
+
lr_mult: 1.0
|
702 |
+
decay_mult: 1.0
|
703 |
+
}
|
704 |
+
param {
|
705 |
+
lr_mult: 2.0
|
706 |
+
decay_mult: 0.0
|
707 |
+
}
|
708 |
+
convolution_param {
|
709 |
+
num_output: 512
|
710 |
+
pad: 1
|
711 |
+
kernel_size: 3
|
712 |
+
group: 512
|
713 |
+
engine: CAFFE
|
714 |
+
weight_filler {
|
715 |
+
type: "msra"
|
716 |
+
}
|
717 |
+
bias_filler {
|
718 |
+
type: "constant"
|
719 |
+
value: 0.0
|
720 |
+
}
|
721 |
+
}
|
722 |
+
}
|
723 |
+
layer {
|
724 |
+
name: "conv11/dw/relu"
|
725 |
+
type: "ReLU"
|
726 |
+
bottom: "conv11/dw"
|
727 |
+
top: "conv11/dw"
|
728 |
+
}
|
729 |
+
layer {
|
730 |
+
name: "conv11"
|
731 |
+
type: "Convolution"
|
732 |
+
bottom: "conv11/dw"
|
733 |
+
top: "conv11"
|
734 |
+
param {
|
735 |
+
lr_mult: 1.0
|
736 |
+
decay_mult: 1.0
|
737 |
+
}
|
738 |
+
param {
|
739 |
+
lr_mult: 2.0
|
740 |
+
decay_mult: 0.0
|
741 |
+
}
|
742 |
+
convolution_param {
|
743 |
+
num_output: 512
|
744 |
+
kernel_size: 1
|
745 |
+
weight_filler {
|
746 |
+
type: "msra"
|
747 |
+
}
|
748 |
+
bias_filler {
|
749 |
+
type: "constant"
|
750 |
+
value: 0.0
|
751 |
+
}
|
752 |
+
}
|
753 |
+
}
|
754 |
+
layer {
|
755 |
+
name: "conv11/relu"
|
756 |
+
type: "ReLU"
|
757 |
+
bottom: "conv11"
|
758 |
+
top: "conv11"
|
759 |
+
}
|
760 |
+
layer {
|
761 |
+
name: "conv12/dw"
|
762 |
+
type: "Convolution"
|
763 |
+
bottom: "conv11"
|
764 |
+
top: "conv12/dw"
|
765 |
+
param {
|
766 |
+
lr_mult: 1.0
|
767 |
+
decay_mult: 1.0
|
768 |
+
}
|
769 |
+
param {
|
770 |
+
lr_mult: 2.0
|
771 |
+
decay_mult: 0.0
|
772 |
+
}
|
773 |
+
convolution_param {
|
774 |
+
num_output: 512
|
775 |
+
pad: 1
|
776 |
+
kernel_size: 3
|
777 |
+
stride: 2
|
778 |
+
group: 512
|
779 |
+
engine: CAFFE
|
780 |
+
weight_filler {
|
781 |
+
type: "msra"
|
782 |
+
}
|
783 |
+
bias_filler {
|
784 |
+
type: "constant"
|
785 |
+
value: 0.0
|
786 |
+
}
|
787 |
+
}
|
788 |
+
}
|
789 |
+
layer {
|
790 |
+
name: "conv12/dw/relu"
|
791 |
+
type: "ReLU"
|
792 |
+
bottom: "conv12/dw"
|
793 |
+
top: "conv12/dw"
|
794 |
+
}
|
795 |
+
layer {
|
796 |
+
name: "conv12"
|
797 |
+
type: "Convolution"
|
798 |
+
bottom: "conv12/dw"
|
799 |
+
top: "conv12"
|
800 |
+
param {
|
801 |
+
lr_mult: 1.0
|
802 |
+
decay_mult: 1.0
|
803 |
+
}
|
804 |
+
param {
|
805 |
+
lr_mult: 2.0
|
806 |
+
decay_mult: 0.0
|
807 |
+
}
|
808 |
+
convolution_param {
|
809 |
+
num_output: 1024
|
810 |
+
kernel_size: 1
|
811 |
+
weight_filler {
|
812 |
+
type: "msra"
|
813 |
+
}
|
814 |
+
bias_filler {
|
815 |
+
type: "constant"
|
816 |
+
value: 0.0
|
817 |
+
}
|
818 |
+
}
|
819 |
+
}
|
820 |
+
layer {
|
821 |
+
name: "conv12/relu"
|
822 |
+
type: "ReLU"
|
823 |
+
bottom: "conv12"
|
824 |
+
top: "conv12"
|
825 |
+
}
|
826 |
+
layer {
|
827 |
+
name: "conv13/dw"
|
828 |
+
type: "Convolution"
|
829 |
+
bottom: "conv12"
|
830 |
+
top: "conv13/dw"
|
831 |
+
param {
|
832 |
+
lr_mult: 1.0
|
833 |
+
decay_mult: 1.0
|
834 |
+
}
|
835 |
+
param {
|
836 |
+
lr_mult: 2.0
|
837 |
+
decay_mult: 0.0
|
838 |
+
}
|
839 |
+
convolution_param {
|
840 |
+
num_output: 1024
|
841 |
+
pad: 1
|
842 |
+
kernel_size: 3
|
843 |
+
group: 1024
|
844 |
+
engine: CAFFE
|
845 |
+
weight_filler {
|
846 |
+
type: "msra"
|
847 |
+
}
|
848 |
+
bias_filler {
|
849 |
+
type: "constant"
|
850 |
+
value: 0.0
|
851 |
+
}
|
852 |
+
}
|
853 |
+
}
|
854 |
+
layer {
|
855 |
+
name: "conv13/dw/relu"
|
856 |
+
type: "ReLU"
|
857 |
+
bottom: "conv13/dw"
|
858 |
+
top: "conv13/dw"
|
859 |
+
}
|
860 |
+
layer {
|
861 |
+
name: "conv13"
|
862 |
+
type: "Convolution"
|
863 |
+
bottom: "conv13/dw"
|
864 |
+
top: "conv13"
|
865 |
+
param {
|
866 |
+
lr_mult: 1.0
|
867 |
+
decay_mult: 1.0
|
868 |
+
}
|
869 |
+
param {
|
870 |
+
lr_mult: 2.0
|
871 |
+
decay_mult: 0.0
|
872 |
+
}
|
873 |
+
convolution_param {
|
874 |
+
num_output: 1024
|
875 |
+
kernel_size: 1
|
876 |
+
weight_filler {
|
877 |
+
type: "msra"
|
878 |
+
}
|
879 |
+
bias_filler {
|
880 |
+
type: "constant"
|
881 |
+
value: 0.0
|
882 |
+
}
|
883 |
+
}
|
884 |
+
}
|
885 |
+
layer {
|
886 |
+
name: "conv13/relu"
|
887 |
+
type: "ReLU"
|
888 |
+
bottom: "conv13"
|
889 |
+
top: "conv13"
|
890 |
+
}
|
891 |
+
layer {
|
892 |
+
name: "conv14_1"
|
893 |
+
type: "Convolution"
|
894 |
+
bottom: "conv13"
|
895 |
+
top: "conv14_1"
|
896 |
+
param {
|
897 |
+
lr_mult: 1.0
|
898 |
+
decay_mult: 1.0
|
899 |
+
}
|
900 |
+
param {
|
901 |
+
lr_mult: 2.0
|
902 |
+
decay_mult: 0.0
|
903 |
+
}
|
904 |
+
convolution_param {
|
905 |
+
num_output: 256
|
906 |
+
kernel_size: 1
|
907 |
+
weight_filler {
|
908 |
+
type: "msra"
|
909 |
+
}
|
910 |
+
bias_filler {
|
911 |
+
type: "constant"
|
912 |
+
value: 0.0
|
913 |
+
}
|
914 |
+
}
|
915 |
+
}
|
916 |
+
layer {
|
917 |
+
name: "conv14_1/relu"
|
918 |
+
type: "ReLU"
|
919 |
+
bottom: "conv14_1"
|
920 |
+
top: "conv14_1"
|
921 |
+
}
|
922 |
+
layer {
|
923 |
+
name: "conv14_2"
|
924 |
+
type: "Convolution"
|
925 |
+
bottom: "conv14_1"
|
926 |
+
top: "conv14_2"
|
927 |
+
param {
|
928 |
+
lr_mult: 1.0
|
929 |
+
decay_mult: 1.0
|
930 |
+
}
|
931 |
+
param {
|
932 |
+
lr_mult: 2.0
|
933 |
+
decay_mult: 0.0
|
934 |
+
}
|
935 |
+
convolution_param {
|
936 |
+
num_output: 512
|
937 |
+
pad: 1
|
938 |
+
kernel_size: 3
|
939 |
+
stride: 2
|
940 |
+
weight_filler {
|
941 |
+
type: "msra"
|
942 |
+
}
|
943 |
+
bias_filler {
|
944 |
+
type: "constant"
|
945 |
+
value: 0.0
|
946 |
+
}
|
947 |
+
}
|
948 |
+
}
|
949 |
+
layer {
|
950 |
+
name: "conv14_2/relu"
|
951 |
+
type: "ReLU"
|
952 |
+
bottom: "conv14_2"
|
953 |
+
top: "conv14_2"
|
954 |
+
}
|
955 |
+
layer {
|
956 |
+
name: "conv15_1"
|
957 |
+
type: "Convolution"
|
958 |
+
bottom: "conv14_2"
|
959 |
+
top: "conv15_1"
|
960 |
+
param {
|
961 |
+
lr_mult: 1.0
|
962 |
+
decay_mult: 1.0
|
963 |
+
}
|
964 |
+
param {
|
965 |
+
lr_mult: 2.0
|
966 |
+
decay_mult: 0.0
|
967 |
+
}
|
968 |
+
convolution_param {
|
969 |
+
num_output: 128
|
970 |
+
kernel_size: 1
|
971 |
+
weight_filler {
|
972 |
+
type: "msra"
|
973 |
+
}
|
974 |
+
bias_filler {
|
975 |
+
type: "constant"
|
976 |
+
value: 0.0
|
977 |
+
}
|
978 |
+
}
|
979 |
+
}
|
980 |
+
layer {
|
981 |
+
name: "conv15_1/relu"
|
982 |
+
type: "ReLU"
|
983 |
+
bottom: "conv15_1"
|
984 |
+
top: "conv15_1"
|
985 |
+
}
|
986 |
+
layer {
|
987 |
+
name: "conv15_2"
|
988 |
+
type: "Convolution"
|
989 |
+
bottom: "conv15_1"
|
990 |
+
top: "conv15_2"
|
991 |
+
param {
|
992 |
+
lr_mult: 1.0
|
993 |
+
decay_mult: 1.0
|
994 |
+
}
|
995 |
+
param {
|
996 |
+
lr_mult: 2.0
|
997 |
+
decay_mult: 0.0
|
998 |
+
}
|
999 |
+
convolution_param {
|
1000 |
+
num_output: 256
|
1001 |
+
pad: 1
|
1002 |
+
kernel_size: 3
|
1003 |
+
stride: 2
|
1004 |
+
weight_filler {
|
1005 |
+
type: "msra"
|
1006 |
+
}
|
1007 |
+
bias_filler {
|
1008 |
+
type: "constant"
|
1009 |
+
value: 0.0
|
1010 |
+
}
|
1011 |
+
}
|
1012 |
+
}
|
1013 |
+
layer {
|
1014 |
+
name: "conv15_2/relu"
|
1015 |
+
type: "ReLU"
|
1016 |
+
bottom: "conv15_2"
|
1017 |
+
top: "conv15_2"
|
1018 |
+
}
|
1019 |
+
layer {
|
1020 |
+
name: "conv16_1"
|
1021 |
+
type: "Convolution"
|
1022 |
+
bottom: "conv15_2"
|
1023 |
+
top: "conv16_1"
|
1024 |
+
param {
|
1025 |
+
lr_mult: 1.0
|
1026 |
+
decay_mult: 1.0
|
1027 |
+
}
|
1028 |
+
param {
|
1029 |
+
lr_mult: 2.0
|
1030 |
+
decay_mult: 0.0
|
1031 |
+
}
|
1032 |
+
convolution_param {
|
1033 |
+
num_output: 128
|
1034 |
+
kernel_size: 1
|
1035 |
+
weight_filler {
|
1036 |
+
type: "msra"
|
1037 |
+
}
|
1038 |
+
bias_filler {
|
1039 |
+
type: "constant"
|
1040 |
+
value: 0.0
|
1041 |
+
}
|
1042 |
+
}
|
1043 |
+
}
|
1044 |
+
layer {
|
1045 |
+
name: "conv16_1/relu"
|
1046 |
+
type: "ReLU"
|
1047 |
+
bottom: "conv16_1"
|
1048 |
+
top: "conv16_1"
|
1049 |
+
}
|
1050 |
+
layer {
|
1051 |
+
name: "conv16_2"
|
1052 |
+
type: "Convolution"
|
1053 |
+
bottom: "conv16_1"
|
1054 |
+
top: "conv16_2"
|
1055 |
+
param {
|
1056 |
+
lr_mult: 1.0
|
1057 |
+
decay_mult: 1.0
|
1058 |
+
}
|
1059 |
+
param {
|
1060 |
+
lr_mult: 2.0
|
1061 |
+
decay_mult: 0.0
|
1062 |
+
}
|
1063 |
+
convolution_param {
|
1064 |
+
num_output: 256
|
1065 |
+
pad: 1
|
1066 |
+
kernel_size: 3
|
1067 |
+
stride: 2
|
1068 |
+
weight_filler {
|
1069 |
+
type: "msra"
|
1070 |
+
}
|
1071 |
+
bias_filler {
|
1072 |
+
type: "constant"
|
1073 |
+
value: 0.0
|
1074 |
+
}
|
1075 |
+
}
|
1076 |
+
}
|
1077 |
+
layer {
|
1078 |
+
name: "conv16_2/relu"
|
1079 |
+
type: "ReLU"
|
1080 |
+
bottom: "conv16_2"
|
1081 |
+
top: "conv16_2"
|
1082 |
+
}
|
1083 |
+
layer {
|
1084 |
+
name: "conv17_1"
|
1085 |
+
type: "Convolution"
|
1086 |
+
bottom: "conv16_2"
|
1087 |
+
top: "conv17_1"
|
1088 |
+
param {
|
1089 |
+
lr_mult: 1.0
|
1090 |
+
decay_mult: 1.0
|
1091 |
+
}
|
1092 |
+
param {
|
1093 |
+
lr_mult: 2.0
|
1094 |
+
decay_mult: 0.0
|
1095 |
+
}
|
1096 |
+
convolution_param {
|
1097 |
+
num_output: 64
|
1098 |
+
kernel_size: 1
|
1099 |
+
weight_filler {
|
1100 |
+
type: "msra"
|
1101 |
+
}
|
1102 |
+
bias_filler {
|
1103 |
+
type: "constant"
|
1104 |
+
value: 0.0
|
1105 |
+
}
|
1106 |
+
}
|
1107 |
+
}
|
1108 |
+
layer {
|
1109 |
+
name: "conv17_1/relu"
|
1110 |
+
type: "ReLU"
|
1111 |
+
bottom: "conv17_1"
|
1112 |
+
top: "conv17_1"
|
1113 |
+
}
|
1114 |
+
layer {
|
1115 |
+
name: "conv17_2"
|
1116 |
+
type: "Convolution"
|
1117 |
+
bottom: "conv17_1"
|
1118 |
+
top: "conv17_2"
|
1119 |
+
param {
|
1120 |
+
lr_mult: 1.0
|
1121 |
+
decay_mult: 1.0
|
1122 |
+
}
|
1123 |
+
param {
|
1124 |
+
lr_mult: 2.0
|
1125 |
+
decay_mult: 0.0
|
1126 |
+
}
|
1127 |
+
convolution_param {
|
1128 |
+
num_output: 128
|
1129 |
+
pad: 1
|
1130 |
+
kernel_size: 3
|
1131 |
+
stride: 2
|
1132 |
+
weight_filler {
|
1133 |
+
type: "msra"
|
1134 |
+
}
|
1135 |
+
bias_filler {
|
1136 |
+
type: "constant"
|
1137 |
+
value: 0.0
|
1138 |
+
}
|
1139 |
+
}
|
1140 |
+
}
|
1141 |
+
layer {
|
1142 |
+
name: "conv17_2/relu"
|
1143 |
+
type: "ReLU"
|
1144 |
+
bottom: "conv17_2"
|
1145 |
+
top: "conv17_2"
|
1146 |
+
}
|
1147 |
+
layer {
|
1148 |
+
name: "conv11_mbox_loc"
|
1149 |
+
type: "Convolution"
|
1150 |
+
bottom: "conv11"
|
1151 |
+
top: "conv11_mbox_loc"
|
1152 |
+
param {
|
1153 |
+
lr_mult: 1.0
|
1154 |
+
decay_mult: 1.0
|
1155 |
+
}
|
1156 |
+
param {
|
1157 |
+
lr_mult: 2.0
|
1158 |
+
decay_mult: 0.0
|
1159 |
+
}
|
1160 |
+
convolution_param {
|
1161 |
+
num_output: 12
|
1162 |
+
kernel_size: 1
|
1163 |
+
weight_filler {
|
1164 |
+
type: "msra"
|
1165 |
+
}
|
1166 |
+
bias_filler {
|
1167 |
+
type: "constant"
|
1168 |
+
value: 0.0
|
1169 |
+
}
|
1170 |
+
}
|
1171 |
+
}
|
1172 |
+
layer {
|
1173 |
+
name: "conv11_mbox_loc_perm"
|
1174 |
+
type: "Permute"
|
1175 |
+
bottom: "conv11_mbox_loc"
|
1176 |
+
top: "conv11_mbox_loc_perm"
|
1177 |
+
permute_param {
|
1178 |
+
order: 0
|
1179 |
+
order: 2
|
1180 |
+
order: 3
|
1181 |
+
order: 1
|
1182 |
+
}
|
1183 |
+
}
|
1184 |
+
layer {
|
1185 |
+
name: "conv11_mbox_loc_flat"
|
1186 |
+
type: "Flatten"
|
1187 |
+
bottom: "conv11_mbox_loc_perm"
|
1188 |
+
top: "conv11_mbox_loc_flat"
|
1189 |
+
flatten_param {
|
1190 |
+
axis: 1
|
1191 |
+
}
|
1192 |
+
}
|
1193 |
+
layer {
|
1194 |
+
name: "conv11_mbox_conf"
|
1195 |
+
type: "Convolution"
|
1196 |
+
bottom: "conv11"
|
1197 |
+
top: "conv11_mbox_conf"
|
1198 |
+
param {
|
1199 |
+
lr_mult: 1.0
|
1200 |
+
decay_mult: 1.0
|
1201 |
+
}
|
1202 |
+
param {
|
1203 |
+
lr_mult: 2.0
|
1204 |
+
decay_mult: 0.0
|
1205 |
+
}
|
1206 |
+
convolution_param {
|
1207 |
+
num_output: 63
|
1208 |
+
kernel_size: 1
|
1209 |
+
weight_filler {
|
1210 |
+
type: "msra"
|
1211 |
+
}
|
1212 |
+
bias_filler {
|
1213 |
+
type: "constant"
|
1214 |
+
value: 0.0
|
1215 |
+
}
|
1216 |
+
}
|
1217 |
+
}
|
1218 |
+
layer {
|
1219 |
+
name: "conv11_mbox_conf_perm"
|
1220 |
+
type: "Permute"
|
1221 |
+
bottom: "conv11_mbox_conf"
|
1222 |
+
top: "conv11_mbox_conf_perm"
|
1223 |
+
permute_param {
|
1224 |
+
order: 0
|
1225 |
+
order: 2
|
1226 |
+
order: 3
|
1227 |
+
order: 1
|
1228 |
+
}
|
1229 |
+
}
|
1230 |
+
layer {
|
1231 |
+
name: "conv11_mbox_conf_flat"
|
1232 |
+
type: "Flatten"
|
1233 |
+
bottom: "conv11_mbox_conf_perm"
|
1234 |
+
top: "conv11_mbox_conf_flat"
|
1235 |
+
flatten_param {
|
1236 |
+
axis: 1
|
1237 |
+
}
|
1238 |
+
}
|
1239 |
+
layer {
|
1240 |
+
name: "conv11_mbox_priorbox"
|
1241 |
+
type: "PriorBox"
|
1242 |
+
bottom: "conv11"
|
1243 |
+
bottom: "data"
|
1244 |
+
top: "conv11_mbox_priorbox"
|
1245 |
+
prior_box_param {
|
1246 |
+
min_size: 60.0
|
1247 |
+
aspect_ratio: 2.0
|
1248 |
+
flip: true
|
1249 |
+
clip: false
|
1250 |
+
variance: 0.1
|
1251 |
+
variance: 0.1
|
1252 |
+
variance: 0.2
|
1253 |
+
variance: 0.2
|
1254 |
+
offset: 0.5
|
1255 |
+
}
|
1256 |
+
}
|
1257 |
+
layer {
|
1258 |
+
name: "conv13_mbox_loc"
|
1259 |
+
type: "Convolution"
|
1260 |
+
bottom: "conv13"
|
1261 |
+
top: "conv13_mbox_loc"
|
1262 |
+
param {
|
1263 |
+
lr_mult: 1.0
|
1264 |
+
decay_mult: 1.0
|
1265 |
+
}
|
1266 |
+
param {
|
1267 |
+
lr_mult: 2.0
|
1268 |
+
decay_mult: 0.0
|
1269 |
+
}
|
1270 |
+
convolution_param {
|
1271 |
+
num_output: 24
|
1272 |
+
kernel_size: 1
|
1273 |
+
weight_filler {
|
1274 |
+
type: "msra"
|
1275 |
+
}
|
1276 |
+
bias_filler {
|
1277 |
+
type: "constant"
|
1278 |
+
value: 0.0
|
1279 |
+
}
|
1280 |
+
}
|
1281 |
+
}
|
1282 |
+
layer {
|
1283 |
+
name: "conv13_mbox_loc_perm"
|
1284 |
+
type: "Permute"
|
1285 |
+
bottom: "conv13_mbox_loc"
|
1286 |
+
top: "conv13_mbox_loc_perm"
|
1287 |
+
permute_param {
|
1288 |
+
order: 0
|
1289 |
+
order: 2
|
1290 |
+
order: 3
|
1291 |
+
order: 1
|
1292 |
+
}
|
1293 |
+
}
|
1294 |
+
layer {
|
1295 |
+
name: "conv13_mbox_loc_flat"
|
1296 |
+
type: "Flatten"
|
1297 |
+
bottom: "conv13_mbox_loc_perm"
|
1298 |
+
top: "conv13_mbox_loc_flat"
|
1299 |
+
flatten_param {
|
1300 |
+
axis: 1
|
1301 |
+
}
|
1302 |
+
}
|
1303 |
+
layer {
|
1304 |
+
name: "conv13_mbox_conf"
|
1305 |
+
type: "Convolution"
|
1306 |
+
bottom: "conv13"
|
1307 |
+
top: "conv13_mbox_conf"
|
1308 |
+
param {
|
1309 |
+
lr_mult: 1.0
|
1310 |
+
decay_mult: 1.0
|
1311 |
+
}
|
1312 |
+
param {
|
1313 |
+
lr_mult: 2.0
|
1314 |
+
decay_mult: 0.0
|
1315 |
+
}
|
1316 |
+
convolution_param {
|
1317 |
+
num_output: 126
|
1318 |
+
kernel_size: 1
|
1319 |
+
weight_filler {
|
1320 |
+
type: "msra"
|
1321 |
+
}
|
1322 |
+
bias_filler {
|
1323 |
+
type: "constant"
|
1324 |
+
value: 0.0
|
1325 |
+
}
|
1326 |
+
}
|
1327 |
+
}
|
1328 |
+
layer {
|
1329 |
+
name: "conv13_mbox_conf_perm"
|
1330 |
+
type: "Permute"
|
1331 |
+
bottom: "conv13_mbox_conf"
|
1332 |
+
top: "conv13_mbox_conf_perm"
|
1333 |
+
permute_param {
|
1334 |
+
order: 0
|
1335 |
+
order: 2
|
1336 |
+
order: 3
|
1337 |
+
order: 1
|
1338 |
+
}
|
1339 |
+
}
|
1340 |
+
layer {
|
1341 |
+
name: "conv13_mbox_conf_flat"
|
1342 |
+
type: "Flatten"
|
1343 |
+
bottom: "conv13_mbox_conf_perm"
|
1344 |
+
top: "conv13_mbox_conf_flat"
|
1345 |
+
flatten_param {
|
1346 |
+
axis: 1
|
1347 |
+
}
|
1348 |
+
}
|
1349 |
+
layer {
|
1350 |
+
name: "conv13_mbox_priorbox"
|
1351 |
+
type: "PriorBox"
|
1352 |
+
bottom: "conv13"
|
1353 |
+
bottom: "data"
|
1354 |
+
top: "conv13_mbox_priorbox"
|
1355 |
+
prior_box_param {
|
1356 |
+
min_size: 105.0
|
1357 |
+
max_size: 150.0
|
1358 |
+
aspect_ratio: 2.0
|
1359 |
+
aspect_ratio: 3.0
|
1360 |
+
flip: true
|
1361 |
+
clip: false
|
1362 |
+
variance: 0.1
|
1363 |
+
variance: 0.1
|
1364 |
+
variance: 0.2
|
1365 |
+
variance: 0.2
|
1366 |
+
offset: 0.5
|
1367 |
+
}
|
1368 |
+
}
|
1369 |
+
layer {
|
1370 |
+
name: "conv14_2_mbox_loc"
|
1371 |
+
type: "Convolution"
|
1372 |
+
bottom: "conv14_2"
|
1373 |
+
top: "conv14_2_mbox_loc"
|
1374 |
+
param {
|
1375 |
+
lr_mult: 1.0
|
1376 |
+
decay_mult: 1.0
|
1377 |
+
}
|
1378 |
+
param {
|
1379 |
+
lr_mult: 2.0
|
1380 |
+
decay_mult: 0.0
|
1381 |
+
}
|
1382 |
+
convolution_param {
|
1383 |
+
num_output: 24
|
1384 |
+
kernel_size: 1
|
1385 |
+
weight_filler {
|
1386 |
+
type: "msra"
|
1387 |
+
}
|
1388 |
+
bias_filler {
|
1389 |
+
type: "constant"
|
1390 |
+
value: 0.0
|
1391 |
+
}
|
1392 |
+
}
|
1393 |
+
}
|
1394 |
+
layer {
|
1395 |
+
name: "conv14_2_mbox_loc_perm"
|
1396 |
+
type: "Permute"
|
1397 |
+
bottom: "conv14_2_mbox_loc"
|
1398 |
+
top: "conv14_2_mbox_loc_perm"
|
1399 |
+
permute_param {
|
1400 |
+
order: 0
|
1401 |
+
order: 2
|
1402 |
+
order: 3
|
1403 |
+
order: 1
|
1404 |
+
}
|
1405 |
+
}
|
1406 |
+
layer {
|
1407 |
+
name: "conv14_2_mbox_loc_flat"
|
1408 |
+
type: "Flatten"
|
1409 |
+
bottom: "conv14_2_mbox_loc_perm"
|
1410 |
+
top: "conv14_2_mbox_loc_flat"
|
1411 |
+
flatten_param {
|
1412 |
+
axis: 1
|
1413 |
+
}
|
1414 |
+
}
|
1415 |
+
layer {
|
1416 |
+
name: "conv14_2_mbox_conf"
|
1417 |
+
type: "Convolution"
|
1418 |
+
bottom: "conv14_2"
|
1419 |
+
top: "conv14_2_mbox_conf"
|
1420 |
+
param {
|
1421 |
+
lr_mult: 1.0
|
1422 |
+
decay_mult: 1.0
|
1423 |
+
}
|
1424 |
+
param {
|
1425 |
+
lr_mult: 2.0
|
1426 |
+
decay_mult: 0.0
|
1427 |
+
}
|
1428 |
+
convolution_param {
|
1429 |
+
num_output: 126
|
1430 |
+
kernel_size: 1
|
1431 |
+
weight_filler {
|
1432 |
+
type: "msra"
|
1433 |
+
}
|
1434 |
+
bias_filler {
|
1435 |
+
type: "constant"
|
1436 |
+
value: 0.0
|
1437 |
+
}
|
1438 |
+
}
|
1439 |
+
}
|
1440 |
+
layer {
|
1441 |
+
name: "conv14_2_mbox_conf_perm"
|
1442 |
+
type: "Permute"
|
1443 |
+
bottom: "conv14_2_mbox_conf"
|
1444 |
+
top: "conv14_2_mbox_conf_perm"
|
1445 |
+
permute_param {
|
1446 |
+
order: 0
|
1447 |
+
order: 2
|
1448 |
+
order: 3
|
1449 |
+
order: 1
|
1450 |
+
}
|
1451 |
+
}
|
1452 |
+
layer {
|
1453 |
+
name: "conv14_2_mbox_conf_flat"
|
1454 |
+
type: "Flatten"
|
1455 |
+
bottom: "conv14_2_mbox_conf_perm"
|
1456 |
+
top: "conv14_2_mbox_conf_flat"
|
1457 |
+
flatten_param {
|
1458 |
+
axis: 1
|
1459 |
+
}
|
1460 |
+
}
|
1461 |
+
layer {
|
1462 |
+
name: "conv14_2_mbox_priorbox"
|
1463 |
+
type: "PriorBox"
|
1464 |
+
bottom: "conv14_2"
|
1465 |
+
bottom: "data"
|
1466 |
+
top: "conv14_2_mbox_priorbox"
|
1467 |
+
prior_box_param {
|
1468 |
+
min_size: 150.0
|
1469 |
+
max_size: 195.0
|
1470 |
+
aspect_ratio: 2.0
|
1471 |
+
aspect_ratio: 3.0
|
1472 |
+
flip: true
|
1473 |
+
clip: false
|
1474 |
+
variance: 0.1
|
1475 |
+
variance: 0.1
|
1476 |
+
variance: 0.2
|
1477 |
+
variance: 0.2
|
1478 |
+
offset: 0.5
|
1479 |
+
}
|
1480 |
+
}
|
1481 |
+
layer {
|
1482 |
+
name: "conv15_2_mbox_loc"
|
1483 |
+
type: "Convolution"
|
1484 |
+
bottom: "conv15_2"
|
1485 |
+
top: "conv15_2_mbox_loc"
|
1486 |
+
param {
|
1487 |
+
lr_mult: 1.0
|
1488 |
+
decay_mult: 1.0
|
1489 |
+
}
|
1490 |
+
param {
|
1491 |
+
lr_mult: 2.0
|
1492 |
+
decay_mult: 0.0
|
1493 |
+
}
|
1494 |
+
convolution_param {
|
1495 |
+
num_output: 24
|
1496 |
+
kernel_size: 1
|
1497 |
+
weight_filler {
|
1498 |
+
type: "msra"
|
1499 |
+
}
|
1500 |
+
bias_filler {
|
1501 |
+
type: "constant"
|
1502 |
+
value: 0.0
|
1503 |
+
}
|
1504 |
+
}
|
1505 |
+
}
|
1506 |
+
layer {
|
1507 |
+
name: "conv15_2_mbox_loc_perm"
|
1508 |
+
type: "Permute"
|
1509 |
+
bottom: "conv15_2_mbox_loc"
|
1510 |
+
top: "conv15_2_mbox_loc_perm"
|
1511 |
+
permute_param {
|
1512 |
+
order: 0
|
1513 |
+
order: 2
|
1514 |
+
order: 3
|
1515 |
+
order: 1
|
1516 |
+
}
|
1517 |
+
}
|
1518 |
+
layer {
|
1519 |
+
name: "conv15_2_mbox_loc_flat"
|
1520 |
+
type: "Flatten"
|
1521 |
+
bottom: "conv15_2_mbox_loc_perm"
|
1522 |
+
top: "conv15_2_mbox_loc_flat"
|
1523 |
+
flatten_param {
|
1524 |
+
axis: 1
|
1525 |
+
}
|
1526 |
+
}
|
1527 |
+
layer {
|
1528 |
+
name: "conv15_2_mbox_conf"
|
1529 |
+
type: "Convolution"
|
1530 |
+
bottom: "conv15_2"
|
1531 |
+
top: "conv15_2_mbox_conf"
|
1532 |
+
param {
|
1533 |
+
lr_mult: 1.0
|
1534 |
+
decay_mult: 1.0
|
1535 |
+
}
|
1536 |
+
param {
|
1537 |
+
lr_mult: 2.0
|
1538 |
+
decay_mult: 0.0
|
1539 |
+
}
|
1540 |
+
convolution_param {
|
1541 |
+
num_output: 126
|
1542 |
+
kernel_size: 1
|
1543 |
+
weight_filler {
|
1544 |
+
type: "msra"
|
1545 |
+
}
|
1546 |
+
bias_filler {
|
1547 |
+
type: "constant"
|
1548 |
+
value: 0.0
|
1549 |
+
}
|
1550 |
+
}
|
1551 |
+
}
|
1552 |
+
layer {
|
1553 |
+
name: "conv15_2_mbox_conf_perm"
|
1554 |
+
type: "Permute"
|
1555 |
+
bottom: "conv15_2_mbox_conf"
|
1556 |
+
top: "conv15_2_mbox_conf_perm"
|
1557 |
+
permute_param {
|
1558 |
+
order: 0
|
1559 |
+
order: 2
|
1560 |
+
order: 3
|
1561 |
+
order: 1
|
1562 |
+
}
|
1563 |
+
}
|
1564 |
+
layer {
|
1565 |
+
name: "conv15_2_mbox_conf_flat"
|
1566 |
+
type: "Flatten"
|
1567 |
+
bottom: "conv15_2_mbox_conf_perm"
|
1568 |
+
top: "conv15_2_mbox_conf_flat"
|
1569 |
+
flatten_param {
|
1570 |
+
axis: 1
|
1571 |
+
}
|
1572 |
+
}
|
1573 |
+
layer {
|
1574 |
+
name: "conv15_2_mbox_priorbox"
|
1575 |
+
type: "PriorBox"
|
1576 |
+
bottom: "conv15_2"
|
1577 |
+
bottom: "data"
|
1578 |
+
top: "conv15_2_mbox_priorbox"
|
1579 |
+
prior_box_param {
|
1580 |
+
min_size: 195.0
|
1581 |
+
max_size: 240.0
|
1582 |
+
aspect_ratio: 2.0
|
1583 |
+
aspect_ratio: 3.0
|
1584 |
+
flip: true
|
1585 |
+
clip: false
|
1586 |
+
variance: 0.1
|
1587 |
+
variance: 0.1
|
1588 |
+
variance: 0.2
|
1589 |
+
variance: 0.2
|
1590 |
+
offset: 0.5
|
1591 |
+
}
|
1592 |
+
}
|
1593 |
+
layer {
|
1594 |
+
name: "conv16_2_mbox_loc"
|
1595 |
+
type: "Convolution"
|
1596 |
+
bottom: "conv16_2"
|
1597 |
+
top: "conv16_2_mbox_loc"
|
1598 |
+
param {
|
1599 |
+
lr_mult: 1.0
|
1600 |
+
decay_mult: 1.0
|
1601 |
+
}
|
1602 |
+
param {
|
1603 |
+
lr_mult: 2.0
|
1604 |
+
decay_mult: 0.0
|
1605 |
+
}
|
1606 |
+
convolution_param {
|
1607 |
+
num_output: 24
|
1608 |
+
kernel_size: 1
|
1609 |
+
weight_filler {
|
1610 |
+
type: "msra"
|
1611 |
+
}
|
1612 |
+
bias_filler {
|
1613 |
+
type: "constant"
|
1614 |
+
value: 0.0
|
1615 |
+
}
|
1616 |
+
}
|
1617 |
+
}
|
1618 |
+
layer {
|
1619 |
+
name: "conv16_2_mbox_loc_perm"
|
1620 |
+
type: "Permute"
|
1621 |
+
bottom: "conv16_2_mbox_loc"
|
1622 |
+
top: "conv16_2_mbox_loc_perm"
|
1623 |
+
permute_param {
|
1624 |
+
order: 0
|
1625 |
+
order: 2
|
1626 |
+
order: 3
|
1627 |
+
order: 1
|
1628 |
+
}
|
1629 |
+
}
|
1630 |
+
layer {
|
1631 |
+
name: "conv16_2_mbox_loc_flat"
|
1632 |
+
type: "Flatten"
|
1633 |
+
bottom: "conv16_2_mbox_loc_perm"
|
1634 |
+
top: "conv16_2_mbox_loc_flat"
|
1635 |
+
flatten_param {
|
1636 |
+
axis: 1
|
1637 |
+
}
|
1638 |
+
}
|
1639 |
+
layer {
|
1640 |
+
name: "conv16_2_mbox_conf"
|
1641 |
+
type: "Convolution"
|
1642 |
+
bottom: "conv16_2"
|
1643 |
+
top: "conv16_2_mbox_conf"
|
1644 |
+
param {
|
1645 |
+
lr_mult: 1.0
|
1646 |
+
decay_mult: 1.0
|
1647 |
+
}
|
1648 |
+
param {
|
1649 |
+
lr_mult: 2.0
|
1650 |
+
decay_mult: 0.0
|
1651 |
+
}
|
1652 |
+
convolution_param {
|
1653 |
+
num_output: 126
|
1654 |
+
kernel_size: 1
|
1655 |
+
weight_filler {
|
1656 |
+
type: "msra"
|
1657 |
+
}
|
1658 |
+
bias_filler {
|
1659 |
+
type: "constant"
|
1660 |
+
value: 0.0
|
1661 |
+
}
|
1662 |
+
}
|
1663 |
+
}
|
1664 |
+
layer {
|
1665 |
+
name: "conv16_2_mbox_conf_perm"
|
1666 |
+
type: "Permute"
|
1667 |
+
bottom: "conv16_2_mbox_conf"
|
1668 |
+
top: "conv16_2_mbox_conf_perm"
|
1669 |
+
permute_param {
|
1670 |
+
order: 0
|
1671 |
+
order: 2
|
1672 |
+
order: 3
|
1673 |
+
order: 1
|
1674 |
+
}
|
1675 |
+
}
|
1676 |
+
layer {
|
1677 |
+
name: "conv16_2_mbox_conf_flat"
|
1678 |
+
type: "Flatten"
|
1679 |
+
bottom: "conv16_2_mbox_conf_perm"
|
1680 |
+
top: "conv16_2_mbox_conf_flat"
|
1681 |
+
flatten_param {
|
1682 |
+
axis: 1
|
1683 |
+
}
|
1684 |
+
}
|
1685 |
+
layer {
|
1686 |
+
name: "conv16_2_mbox_priorbox"
|
1687 |
+
type: "PriorBox"
|
1688 |
+
bottom: "conv16_2"
|
1689 |
+
bottom: "data"
|
1690 |
+
top: "conv16_2_mbox_priorbox"
|
1691 |
+
prior_box_param {
|
1692 |
+
min_size: 240.0
|
1693 |
+
max_size: 285.0
|
1694 |
+
aspect_ratio: 2.0
|
1695 |
+
aspect_ratio: 3.0
|
1696 |
+
flip: true
|
1697 |
+
clip: false
|
1698 |
+
variance: 0.1
|
1699 |
+
variance: 0.1
|
1700 |
+
variance: 0.2
|
1701 |
+
variance: 0.2
|
1702 |
+
offset: 0.5
|
1703 |
+
}
|
1704 |
+
}
|
1705 |
+
layer {
|
1706 |
+
name: "conv17_2_mbox_loc"
|
1707 |
+
type: "Convolution"
|
1708 |
+
bottom: "conv17_2"
|
1709 |
+
top: "conv17_2_mbox_loc"
|
1710 |
+
param {
|
1711 |
+
lr_mult: 1.0
|
1712 |
+
decay_mult: 1.0
|
1713 |
+
}
|
1714 |
+
param {
|
1715 |
+
lr_mult: 2.0
|
1716 |
+
decay_mult: 0.0
|
1717 |
+
}
|
1718 |
+
convolution_param {
|
1719 |
+
num_output: 24
|
1720 |
+
kernel_size: 1
|
1721 |
+
weight_filler {
|
1722 |
+
type: "msra"
|
1723 |
+
}
|
1724 |
+
bias_filler {
|
1725 |
+
type: "constant"
|
1726 |
+
value: 0.0
|
1727 |
+
}
|
1728 |
+
}
|
1729 |
+
}
|
1730 |
+
layer {
|
1731 |
+
name: "conv17_2_mbox_loc_perm"
|
1732 |
+
type: "Permute"
|
1733 |
+
bottom: "conv17_2_mbox_loc"
|
1734 |
+
top: "conv17_2_mbox_loc_perm"
|
1735 |
+
permute_param {
|
1736 |
+
order: 0
|
1737 |
+
order: 2
|
1738 |
+
order: 3
|
1739 |
+
order: 1
|
1740 |
+
}
|
1741 |
+
}
|
1742 |
+
layer {
|
1743 |
+
name: "conv17_2_mbox_loc_flat"
|
1744 |
+
type: "Flatten"
|
1745 |
+
bottom: "conv17_2_mbox_loc_perm"
|
1746 |
+
top: "conv17_2_mbox_loc_flat"
|
1747 |
+
flatten_param {
|
1748 |
+
axis: 1
|
1749 |
+
}
|
1750 |
+
}
|
1751 |
+
layer {
|
1752 |
+
name: "conv17_2_mbox_conf"
|
1753 |
+
type: "Convolution"
|
1754 |
+
bottom: "conv17_2"
|
1755 |
+
top: "conv17_2_mbox_conf"
|
1756 |
+
param {
|
1757 |
+
lr_mult: 1.0
|
1758 |
+
decay_mult: 1.0
|
1759 |
+
}
|
1760 |
+
param {
|
1761 |
+
lr_mult: 2.0
|
1762 |
+
decay_mult: 0.0
|
1763 |
+
}
|
1764 |
+
convolution_param {
|
1765 |
+
num_output: 126
|
1766 |
+
kernel_size: 1
|
1767 |
+
weight_filler {
|
1768 |
+
type: "msra"
|
1769 |
+
}
|
1770 |
+
bias_filler {
|
1771 |
+
type: "constant"
|
1772 |
+
value: 0.0
|
1773 |
+
}
|
1774 |
+
}
|
1775 |
+
}
|
1776 |
+
layer {
|
1777 |
+
name: "conv17_2_mbox_conf_perm"
|
1778 |
+
type: "Permute"
|
1779 |
+
bottom: "conv17_2_mbox_conf"
|
1780 |
+
top: "conv17_2_mbox_conf_perm"
|
1781 |
+
permute_param {
|
1782 |
+
order: 0
|
1783 |
+
order: 2
|
1784 |
+
order: 3
|
1785 |
+
order: 1
|
1786 |
+
}
|
1787 |
+
}
|
1788 |
+
layer {
|
1789 |
+
name: "conv17_2_mbox_conf_flat"
|
1790 |
+
type: "Flatten"
|
1791 |
+
bottom: "conv17_2_mbox_conf_perm"
|
1792 |
+
top: "conv17_2_mbox_conf_flat"
|
1793 |
+
flatten_param {
|
1794 |
+
axis: 1
|
1795 |
+
}
|
1796 |
+
}
|
1797 |
+
layer {
|
1798 |
+
name: "conv17_2_mbox_priorbox"
|
1799 |
+
type: "PriorBox"
|
1800 |
+
bottom: "conv17_2"
|
1801 |
+
bottom: "data"
|
1802 |
+
top: "conv17_2_mbox_priorbox"
|
1803 |
+
prior_box_param {
|
1804 |
+
min_size: 285.0
|
1805 |
+
max_size: 300.0
|
1806 |
+
aspect_ratio: 2.0
|
1807 |
+
aspect_ratio: 3.0
|
1808 |
+
flip: true
|
1809 |
+
clip: false
|
1810 |
+
variance: 0.1
|
1811 |
+
variance: 0.1
|
1812 |
+
variance: 0.2
|
1813 |
+
variance: 0.2
|
1814 |
+
offset: 0.5
|
1815 |
+
}
|
1816 |
+
}
|
1817 |
+
layer {
|
1818 |
+
name: "mbox_loc"
|
1819 |
+
type: "Concat"
|
1820 |
+
bottom: "conv11_mbox_loc_flat"
|
1821 |
+
bottom: "conv13_mbox_loc_flat"
|
1822 |
+
bottom: "conv14_2_mbox_loc_flat"
|
1823 |
+
bottom: "conv15_2_mbox_loc_flat"
|
1824 |
+
bottom: "conv16_2_mbox_loc_flat"
|
1825 |
+
bottom: "conv17_2_mbox_loc_flat"
|
1826 |
+
top: "mbox_loc"
|
1827 |
+
concat_param {
|
1828 |
+
axis: 1
|
1829 |
+
}
|
1830 |
+
}
|
1831 |
+
layer {
|
1832 |
+
name: "mbox_conf"
|
1833 |
+
type: "Concat"
|
1834 |
+
bottom: "conv11_mbox_conf_flat"
|
1835 |
+
bottom: "conv13_mbox_conf_flat"
|
1836 |
+
bottom: "conv14_2_mbox_conf_flat"
|
1837 |
+
bottom: "conv15_2_mbox_conf_flat"
|
1838 |
+
bottom: "conv16_2_mbox_conf_flat"
|
1839 |
+
bottom: "conv17_2_mbox_conf_flat"
|
1840 |
+
top: "mbox_conf"
|
1841 |
+
concat_param {
|
1842 |
+
axis: 1
|
1843 |
+
}
|
1844 |
+
}
|
1845 |
+
layer {
|
1846 |
+
name: "mbox_priorbox"
|
1847 |
+
type: "Concat"
|
1848 |
+
bottom: "conv11_mbox_priorbox"
|
1849 |
+
bottom: "conv13_mbox_priorbox"
|
1850 |
+
bottom: "conv14_2_mbox_priorbox"
|
1851 |
+
bottom: "conv15_2_mbox_priorbox"
|
1852 |
+
bottom: "conv16_2_mbox_priorbox"
|
1853 |
+
bottom: "conv17_2_mbox_priorbox"
|
1854 |
+
top: "mbox_priorbox"
|
1855 |
+
concat_param {
|
1856 |
+
axis: 2
|
1857 |
+
}
|
1858 |
+
}
|
1859 |
+
layer {
|
1860 |
+
name: "mbox_conf_reshape"
|
1861 |
+
type: "Reshape"
|
1862 |
+
bottom: "mbox_conf"
|
1863 |
+
top: "mbox_conf_reshape"
|
1864 |
+
reshape_param {
|
1865 |
+
shape {
|
1866 |
+
dim: 0
|
1867 |
+
dim: -1
|
1868 |
+
dim: 21
|
1869 |
+
}
|
1870 |
+
}
|
1871 |
+
}
|
1872 |
+
layer {
|
1873 |
+
name: "mbox_conf_softmax"
|
1874 |
+
type: "Softmax"
|
1875 |
+
bottom: "mbox_conf_reshape"
|
1876 |
+
top: "mbox_conf_softmax"
|
1877 |
+
softmax_param {
|
1878 |
+
axis: 2
|
1879 |
+
}
|
1880 |
+
}
|
1881 |
+
layer {
|
1882 |
+
name: "mbox_conf_flatten"
|
1883 |
+
type: "Flatten"
|
1884 |
+
bottom: "mbox_conf_softmax"
|
1885 |
+
top: "mbox_conf_flatten"
|
1886 |
+
flatten_param {
|
1887 |
+
axis: 1
|
1888 |
+
}
|
1889 |
+
}
|
1890 |
+
layer {
|
1891 |
+
name: "detection_out"
|
1892 |
+
type: "DetectionOutput"
|
1893 |
+
bottom: "mbox_loc"
|
1894 |
+
bottom: "mbox_conf_flatten"
|
1895 |
+
bottom: "mbox_priorbox"
|
1896 |
+
top: "detection_out"
|
1897 |
+
include {
|
1898 |
+
phase: TEST
|
1899 |
+
}
|
1900 |
+
detection_output_param {
|
1901 |
+
num_classes: 21
|
1902 |
+
share_location: true
|
1903 |
+
background_label_id: 0
|
1904 |
+
nms_param {
|
1905 |
+
nms_threshold: 0.45
|
1906 |
+
top_k: 100
|
1907 |
+
}
|
1908 |
+
code_type: CENTER_SIZE
|
1909 |
+
keep_top_k: 100
|
1910 |
+
confidence_threshold: 0.25
|
1911 |
+
}
|
1912 |
+
}
|
model files/generic object detection model/readme.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
This model can detect multiple objects like person, cat, dog, bus, car, airplane etc.
|
2 |
+
|
3 |
+
Here is the full list:
|
4 |
+
|
5 |
+
"background", "aeroplane", "bicycle", "bird", "boat",
|
6 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
7 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
8 |
+
"sofa", "train", "tvmonitor"
|
opencv-example.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import imutils
|
3 |
+
|
4 |
+
# image = cv2.imread('input_image.jpg')
|
5 |
+
cap = cv2.VideoCapture(1)
|
6 |
+
|
7 |
+
while True:
|
8 |
+
ret, frame = cap.read()
|
9 |
+
frame = imutils.resize(frame, width=800)
|
10 |
+
|
11 |
+
text = "This is my custom text"
|
12 |
+
cv2.putText(frame, text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
13 |
+
|
14 |
+
cv2.rectangle(frame, (50, 50), (500, 500), (0, 0, 255), 2)
|
15 |
+
|
16 |
+
cv2.imshow('Application', frame)
|
17 |
+
|
18 |
+
key = cv2.waitKey(1)
|
19 |
+
if key == ord('q'):
|
20 |
+
break
|
21 |
+
|
22 |
+
cv2.destroyAllWindows()
|
pages/Login.py
ADDED
@@ -0,0 +1,679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import datetime
|
3 |
+
import imutils
|
4 |
+
import numpy as np
|
5 |
+
from centroidtracker import CentroidTracker
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
import streamlit as st
|
9 |
+
import mediapipe as mp
|
10 |
+
import cv2 as cv
|
11 |
+
import numpy as np
|
12 |
+
import tempfile
|
13 |
+
import time
|
14 |
+
from PIL import Image
|
15 |
+
import pandas as pd
|
16 |
+
import torch
|
17 |
+
import base64
|
18 |
+
import streamlit.components.v1 as components
|
19 |
+
import csv
|
20 |
+
import pickle
|
21 |
+
from pathlib import Path
|
22 |
+
import streamlit_authenticator as stauth
|
23 |
+
import os
|
24 |
+
import csv
|
25 |
+
from streamlit_option_menu import option_menu
|
26 |
+
# x-x-x-x-x-x-x-x-x-x-x-x-x-x LOGIN FORM x-x-x-x-x-x-x-x-x
|
27 |
+
|
28 |
+
|
29 |
+
import streamlit as st
|
30 |
+
import pandas as pd
|
31 |
+
import hashlib
|
32 |
+
import sqlite3
|
33 |
+
#
|
34 |
+
|
35 |
+
import pickle
|
36 |
+
from pathlib import Path
|
37 |
+
import streamlit_authenticator as stauth
|
38 |
+
import pyautogui
|
39 |
+
|
40 |
+
# print("Done !!!")
|
41 |
+
|
42 |
+
data = ["student Count",'Date','Id','Mobile','Watch']
|
43 |
+
with open('final.csv', 'w') as file:
|
44 |
+
writer = csv.writer(file)
|
45 |
+
writer.writerow(data)
|
46 |
+
|
47 |
+
|
48 |
+
# # l1 = []
|
49 |
+
# # l2 = []
|
50 |
+
# # if st.button('signup'):
|
51 |
+
|
52 |
+
|
53 |
+
# # usernames = st.text_input('Username')
|
54 |
+
# # pwd = st.text_input('Password')
|
55 |
+
# # l1.append(usernames)
|
56 |
+
# # l2.append(pwd)
|
57 |
+
|
58 |
+
# # names = ["dmin", "ser"]
|
59 |
+
# # if st.button("signupsss"):
|
60 |
+
# # username =l1
|
61 |
+
|
62 |
+
# # password =l2
|
63 |
+
|
64 |
+
# # hashed_passwords =stauth.Hasher(password).generate()
|
65 |
+
|
66 |
+
# # file_path = Path(__file__).parent / "hashed_pw.pkl"
|
67 |
+
|
68 |
+
# # with file_path.open("wb") as file:
|
69 |
+
# # pickle.dump(hashed_passwords, file)
|
70 |
+
|
71 |
+
|
72 |
+
# # elif st.button('Logins'):
|
73 |
+
# names = ['dmin', 'ser']
|
74 |
+
|
75 |
+
# username = []
|
76 |
+
|
77 |
+
# file_path = Path(__file__).parent / 'hashed_pw.pkl'
|
78 |
+
|
79 |
+
# with file_path.open('rb') as file:
|
80 |
+
# hashed_passwords = pickle.load(file)
|
81 |
+
|
82 |
+
# authenticator = stauth.Authenticate(names,username,hashed_passwords,'Cheating Detection','abcdefg',cookie_expiry_days=180)
|
83 |
+
|
84 |
+
# name,authentication_status,username= authenticator.login('Login','main')
|
85 |
+
|
86 |
+
|
87 |
+
# if authentication_status == False:
|
88 |
+
# st.error('Username/Password is incorrect')
|
89 |
+
|
90 |
+
# if authentication_status == None:
|
91 |
+
# st.error('Please enter a username and password')
|
92 |
+
|
93 |
+
@st.experimental_memo
|
94 |
+
def get_img_as_base64(file):
|
95 |
+
with open(file, "rb") as f:
|
96 |
+
data = f.read()
|
97 |
+
return base64.b64encode(data).decode()
|
98 |
+
|
99 |
+
|
100 |
+
#img = get_img_as_base64("/home/anas/PersonTracking/WebUI/attendence.jpg")
|
101 |
+
|
102 |
+
page_bg_img = f"""
|
103 |
+
<style>
|
104 |
+
[data-testid="stAppViewContainer"] > .main {{
|
105 |
+
background-image: url("https://www.xmple.com/wallpaper/blue-gradient-black-linear-1920x1080-c2-87cefa-000000-a-180-f-14.svg");
|
106 |
+
background-size: 180%;
|
107 |
+
background-position: top left;
|
108 |
+
background-repeat: no-repeat;
|
109 |
+
background-attachment: local;
|
110 |
+
}}
|
111 |
+
|
112 |
+
[data-testid="stHeader"] {{
|
113 |
+
background: rgba(0,0,0,0);
|
114 |
+
}}
|
115 |
+
[data-testid="stToolbar"] {{
|
116 |
+
right: 2rem;
|
117 |
+
}}
|
118 |
+
</style>
|
119 |
+
"""
|
120 |
+
|
121 |
+
st.markdown(page_bg_img, unsafe_allow_html=True)
|
122 |
+
files = pd.read_csv('LoginStatus.csv')
|
123 |
+
|
124 |
+
|
125 |
+
idS = list(files['Id'])
|
126 |
+
Pwd = list(files['Password'].astype(str))
|
127 |
+
|
128 |
+
# print(type(Pwd))
|
129 |
+
ids = st.sidebar.text_input('Enter a username')
|
130 |
+
Pswd = st.sidebar.text_input('Enter a password',type="password",key="password")
|
131 |
+
|
132 |
+
# print('list : ',type(Pwd))
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
if (ids in idS) and(str(Pswd) in Pwd):
|
137 |
+
|
138 |
+
# st.empty()
|
139 |
+
date_time = time.strftime("%b %d %Y %-I:%M %p")
|
140 |
+
date = date_time.split()
|
141 |
+
dates = date[0:3]
|
142 |
+
times = date[3:5]
|
143 |
+
# x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xAPPLICACTION -x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
|
144 |
+
|
145 |
+
def non_max_suppression_fast(boxes, overlapThresh):
|
146 |
+
try:
|
147 |
+
if len(boxes) == 0:
|
148 |
+
return []
|
149 |
+
|
150 |
+
if boxes.dtype.kind == "i":
|
151 |
+
boxes = boxes.astype("float")
|
152 |
+
|
153 |
+
pick = []
|
154 |
+
|
155 |
+
x1 = boxes[:, 0]
|
156 |
+
y1 = boxes[:, 1]
|
157 |
+
x2 = boxes[:, 2]
|
158 |
+
y2 = boxes[:, 3]
|
159 |
+
|
160 |
+
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
161 |
+
idxs = np.argsort(y2)
|
162 |
+
|
163 |
+
while len(idxs) > 0:
|
164 |
+
last = len(idxs) - 1
|
165 |
+
i = idxs[last]
|
166 |
+
pick.append(i)
|
167 |
+
|
168 |
+
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
169 |
+
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
170 |
+
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
171 |
+
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
172 |
+
|
173 |
+
w = np.maximum(0, xx2 - xx1 + 1)
|
174 |
+
h = np.maximum(0, yy2 - yy1 + 1)
|
175 |
+
|
176 |
+
overlap = (w * h) / area[idxs[:last]]
|
177 |
+
|
178 |
+
idxs = np.delete(idxs, np.concatenate(([last],
|
179 |
+
np.where(overlap > overlapThresh)[0])))
|
180 |
+
|
181 |
+
return boxes[pick].astype("int")
|
182 |
+
except Exception as e:
|
183 |
+
print("Exception occurred in non_max_suppression : {}".format(e))
|
184 |
+
|
185 |
+
|
186 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
187 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
188 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
189 |
+
# Only enable it if you are using OpenVino environment
|
190 |
+
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
191 |
+
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
192 |
+
|
193 |
+
|
194 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
195 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
196 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
197 |
+
"sofa", "train", "tvmonitor"]
|
198 |
+
|
199 |
+
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
|
200 |
+
|
201 |
+
st.markdown(
|
202 |
+
"""
|
203 |
+
<style>
|
204 |
+
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
|
205 |
+
width: 350px
|
206 |
+
}
|
207 |
+
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
|
208 |
+
width: 350px
|
209 |
+
margin-left: -350px
|
210 |
+
}
|
211 |
+
</style>
|
212 |
+
""",
|
213 |
+
unsafe_allow_html=True,
|
214 |
+
)
|
215 |
+
hide_streamlit_style = """
|
216 |
+
<style>
|
217 |
+
#MainMenu {visibility: hidden;}
|
218 |
+
footer {visibility: hidden;}
|
219 |
+
</style>
|
220 |
+
"""
|
221 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
222 |
+
|
223 |
+
|
224 |
+
# Resize Images to fit Container
|
225 |
+
@st.cache()
|
226 |
+
# Get Image Dimensions
|
227 |
+
def image_resize(image, width=None, height=None, inter=cv.INTER_AREA):
|
228 |
+
dim = None
|
229 |
+
(h,w) = image.shape[:2]
|
230 |
+
|
231 |
+
if width is None and height is None:
|
232 |
+
return image
|
233 |
+
|
234 |
+
if width is None:
|
235 |
+
r = width/float(w)
|
236 |
+
dim = (int(w*r),height)
|
237 |
+
|
238 |
+
else:
|
239 |
+
r = width/float(w)
|
240 |
+
dim = width, int(h*r)
|
241 |
+
|
242 |
+
# Resize image
|
243 |
+
resized = cv.resize(image,dim,interpolation=inter)
|
244 |
+
|
245 |
+
return resized
|
246 |
+
|
247 |
+
# About Page
|
248 |
+
# authenticator.logout('Logout')
|
249 |
+
EXAMPLE_NO = 3
|
250 |
+
|
251 |
+
|
252 |
+
def streamlit_menu(example=1):
|
253 |
+
if example == 1:
|
254 |
+
# 1. as sidebar menu
|
255 |
+
with st.sidebar:
|
256 |
+
selected = option_menu(
|
257 |
+
menu_title="Main Menu", # required
|
258 |
+
options=["Home", "Projects", "Contact"], # required
|
259 |
+
icons=["house", "book", "envelope"], # optional
|
260 |
+
menu_icon="cast", # optional
|
261 |
+
default_index=0, # optional
|
262 |
+
)
|
263 |
+
return selected
|
264 |
+
|
265 |
+
if example == 2:
|
266 |
+
# 2. horizontal menu w/o custom style
|
267 |
+
selected = option_menu(
|
268 |
+
menu_title=None, # required
|
269 |
+
options=["Home", "Projects", "Contact"], # required
|
270 |
+
icons=["house", "book", "envelope"], # optional
|
271 |
+
menu_icon="cast", # optional
|
272 |
+
default_index=0, # optional
|
273 |
+
orientation="horizontal",
|
274 |
+
)
|
275 |
+
return selected
|
276 |
+
|
277 |
+
if example == 3:
|
278 |
+
# 2. horizontal menu with custom style
|
279 |
+
selected = option_menu(
|
280 |
+
menu_title=None, # required
|
281 |
+
options=["Home", "Projects", "Contact"], # required
|
282 |
+
icons=["house", "book", "envelope"], # optional
|
283 |
+
menu_icon="cast", # optional
|
284 |
+
default_index=0, # optional
|
285 |
+
orientation="horizontal",
|
286 |
+
styles={
|
287 |
+
"container": {"padding": "0!important", "background-color": "#eaeaea"},
|
288 |
+
"icon": {"color": "#080602", "font-size": "18px"},
|
289 |
+
"nav-link": {
|
290 |
+
"font-size": "18px",
|
291 |
+
"text-align": "left",
|
292 |
+
"color": "#000000",
|
293 |
+
"margin": "0px",
|
294 |
+
"--hover-color": "#E1A031",
|
295 |
+
},
|
296 |
+
"nav-link-selected": {"background-color": "#ffffff"},
|
297 |
+
},
|
298 |
+
)
|
299 |
+
return selected
|
300 |
+
|
301 |
+
|
302 |
+
selected = streamlit_menu(example=EXAMPLE_NO)
|
303 |
+
|
304 |
+
if selected == "Home":
|
305 |
+
st.title(f"You have selected {selected}")
|
306 |
+
# if selected == "Projects":
|
307 |
+
# st.title(f"You have selected {selected}")
|
308 |
+
if selected == "Contact":
|
309 |
+
st.title(f"You have selected {selected}")
|
310 |
+
# app_mode = st.sidebar.selectbox(
|
311 |
+
# 'App Mode',
|
312 |
+
# ['Application']
|
313 |
+
# )
|
314 |
+
if selected == 'Projects':
|
315 |
+
# 2. horizontal menu with custom style
|
316 |
+
# selected = option_menu(
|
317 |
+
# menu_title=None, # required
|
318 |
+
# options=["Home", "Projects", "Contact"], # required
|
319 |
+
# icons=["house", "book", "envelope"], # optional
|
320 |
+
# menu_icon="cast", # optional
|
321 |
+
# default_index=0, # optional
|
322 |
+
# orientation="horizontal",
|
323 |
+
# styles={
|
324 |
+
# "container": {"padding": "0!important", "background-color": "#fafafa"},
|
325 |
+
# "icon": {"color": "orange", "font-size": "25px"},
|
326 |
+
# "nav-link": {
|
327 |
+
# "font-size": "25px",
|
328 |
+
# "text-align": "left",
|
329 |
+
# "margin": "0px",
|
330 |
+
# "--hover-color": "#eee",
|
331 |
+
# },
|
332 |
+
# "nav-link-selected": {"background-color": "blue"},
|
333 |
+
# },
|
334 |
+
# )
|
335 |
+
# if app_mode == 'About':
|
336 |
+
# st.title('About Product And Team')
|
337 |
+
# st.markdown('''
|
338 |
+
# Imran Bhai Project
|
339 |
+
# ''')
|
340 |
+
# st.markdown(
|
341 |
+
# """
|
342 |
+
# <style>
|
343 |
+
# [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
|
344 |
+
# width: 350px
|
345 |
+
# }
|
346 |
+
# [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
|
347 |
+
# width: 350px
|
348 |
+
# margin-left: -350px
|
349 |
+
# }
|
350 |
+
# </style>
|
351 |
+
# """,
|
352 |
+
# unsafe_allow_html=True,
|
353 |
+
# )
|
354 |
+
|
355 |
+
|
356 |
+
|
357 |
+
|
358 |
+
# elif app_mode == 'Application':
|
359 |
+
|
360 |
+
st.set_option('deprecation.showfileUploaderEncoding', False)
|
361 |
+
|
362 |
+
use_webcam = "pass"
|
363 |
+
# record = st.sidebar.checkbox("Record Video")
|
364 |
+
|
365 |
+
# if record:
|
366 |
+
# st.checkbox('Recording', True)
|
367 |
+
|
368 |
+
# drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
|
369 |
+
|
370 |
+
# st.sidebar.markdown('---')
|
371 |
+
|
372 |
+
# ## Add Sidebar and Window style
|
373 |
+
# st.markdown(
|
374 |
+
# """
|
375 |
+
# <style>
|
376 |
+
# [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
|
377 |
+
# width: 350px
|
378 |
+
# }
|
379 |
+
# [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
|
380 |
+
# width: 350px
|
381 |
+
# margin-left: -350px
|
382 |
+
# }
|
383 |
+
# </style>
|
384 |
+
# """,
|
385 |
+
# unsafe_allow_html=True,
|
386 |
+
# )
|
387 |
+
|
388 |
+
# max_faces = st.sidebar.number_input('Maximum Number of Faces', value=5, min_value=1)
|
389 |
+
# st.sidebar.markdown('---')
|
390 |
+
# detection_confidence = st.sidebar.slider('Min Detection Confidence', min_value=0.0,max_value=1.0,value=0.5)
|
391 |
+
# tracking_confidence = st.sidebar.slider('Min Tracking Confidence', min_value=0.0,max_value=1.0,value=0.5)
|
392 |
+
# st.sidebar.markdown('---')
|
393 |
+
|
394 |
+
## Get Video
|
395 |
+
stframe = st.empty()
|
396 |
+
video_file_buffer = st.file_uploader("Upload a Video", type=['mp4', 'mov', 'avi', 'asf', 'm4v'])
|
397 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
398 |
+
|
399 |
+
|
400 |
+
if not video_file_buffer:
|
401 |
+
if use_webcam:
|
402 |
+
video = cv.VideoCapture(0)
|
403 |
+
else:
|
404 |
+
try:
|
405 |
+
video = cv.VideoCapture(1)
|
406 |
+
temp_file.name = video
|
407 |
+
except:
|
408 |
+
pass
|
409 |
+
else:
|
410 |
+
temp_file.write(video_file_buffer.read())
|
411 |
+
video = cv.VideoCapture(temp_file.name)
|
412 |
+
|
413 |
+
width = int(video.get(cv.CAP_PROP_FRAME_WIDTH))
|
414 |
+
height = int(video.get(cv.CAP_PROP_FRAME_HEIGHT))
|
415 |
+
fps_input = int(video.get(cv.CAP_PROP_FPS))
|
416 |
+
|
417 |
+
## Recording
|
418 |
+
codec = cv.VideoWriter_fourcc('a','v','c','1')
|
419 |
+
out = cv.VideoWriter('output1.mp4', codec, fps_input, (width,height))
|
420 |
+
|
421 |
+
# st.sidebar.text('Input Video')
|
422 |
+
# st.sidebar.video(temp_file.name)
|
423 |
+
|
424 |
+
fps = 0
|
425 |
+
i = 0
|
426 |
+
|
427 |
+
drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
|
428 |
+
|
429 |
+
kpil, kpil2, kpil3,kpil4,kpil5, kpil6 = st.columns(6)
|
430 |
+
|
431 |
+
with kpil:
|
432 |
+
st.markdown('**Frame Rate**')
|
433 |
+
kpil_text = st.markdown('0')
|
434 |
+
|
435 |
+
with kpil2:
|
436 |
+
st.markdown('**detection ID**')
|
437 |
+
kpil2_text = st.markdown('0')
|
438 |
+
|
439 |
+
with kpil3:
|
440 |
+
st.markdown('**Mobile**')
|
441 |
+
kpil3_text = st.markdown('0')
|
442 |
+
with kpil4:
|
443 |
+
st.markdown('**Watch**')
|
444 |
+
kpil4_text = st.markdown('0')
|
445 |
+
with kpil5:
|
446 |
+
st.markdown('**Count**')
|
447 |
+
kpil5_text = st.markdown('0')
|
448 |
+
with kpil6:
|
449 |
+
st.markdown('**Img Res**')
|
450 |
+
kpil6_text = st.markdown('0')
|
451 |
+
|
452 |
+
|
453 |
+
|
454 |
+
st.markdown('<hr/>', unsafe_allow_html=True)
|
455 |
+
# try:
|
456 |
+
def main():
|
457 |
+
db = {}
|
458 |
+
|
459 |
+
# cap = cv2.VideoCapture('//home//anas//PersonTracking//WebUI//movement.mp4')
|
460 |
+
path='/usr/local/lib/python3.10/dist-packages/yolo0vs5/yolov5s-int8.tflite'
|
461 |
+
#count=0
|
462 |
+
custom = 'yolov5s'
|
463 |
+
|
464 |
+
model = torch.hub.load('/usr/local/lib/python3.10/dist-packages/yolovs5', custom, path,source='local',force_reload=True)
|
465 |
+
|
466 |
+
b=model.names[0] = 'person'
|
467 |
+
mobile = model.names[67] = 'cell phone'
|
468 |
+
watch = model.names[75] = 'clock'
|
469 |
+
|
470 |
+
fps_start_time = datetime.datetime.now()
|
471 |
+
fps = 0
|
472 |
+
size=416
|
473 |
+
|
474 |
+
count=0
|
475 |
+
counter=0
|
476 |
+
|
477 |
+
|
478 |
+
color=(0,0,255)
|
479 |
+
|
480 |
+
cy1=250
|
481 |
+
offset=6
|
482 |
+
|
483 |
+
|
484 |
+
pt1 = (120, 100)
|
485 |
+
pt2 = (980, 1150)
|
486 |
+
color = (0, 255, 0)
|
487 |
+
|
488 |
+
pt3 = (283, 103)
|
489 |
+
pt4 = (1500, 1150)
|
490 |
+
|
491 |
+
cy2 = 500
|
492 |
+
color = (0, 255, 0)
|
493 |
+
total_frames = 0
|
494 |
+
prevTime = 0
|
495 |
+
cur_frame = 0
|
496 |
+
count=0
|
497 |
+
counter=0
|
498 |
+
fps_start_time = datetime.datetime.now()
|
499 |
+
fps = 0
|
500 |
+
total_frames = 0
|
501 |
+
lpc_count = 0
|
502 |
+
opc_count = 0
|
503 |
+
object_id_list = []
|
504 |
+
# success = True
|
505 |
+
if st.button("Detect"):
|
506 |
+
try:
|
507 |
+
while video.isOpened():
|
508 |
+
|
509 |
+
ret, frame = video.read()
|
510 |
+
frame = imutils.resize(frame, width=600)
|
511 |
+
total_frames = total_frames + 1
|
512 |
+
|
513 |
+
(H, W) = frame.shape[:2]
|
514 |
+
|
515 |
+
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
|
516 |
+
|
517 |
+
detector.setInput(blob)
|
518 |
+
person_detections = detector.forward()
|
519 |
+
rects = []
|
520 |
+
for i in np.arange(0, person_detections.shape[2]):
|
521 |
+
confidence = person_detections[0, 0, i, 2]
|
522 |
+
if confidence > 0.5:
|
523 |
+
idx = int(person_detections[0, 0, i, 1])
|
524 |
+
|
525 |
+
if CLASSES[idx] != "person":
|
526 |
+
continue
|
527 |
+
|
528 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
529 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
530 |
+
rects.append(person_box)
|
531 |
+
|
532 |
+
boundingboxes = np.array(rects)
|
533 |
+
boundingboxes = boundingboxes.astype(int)
|
534 |
+
rects = non_max_suppression_fast(boundingboxes, 0.3)
|
535 |
+
|
536 |
+
objects = tracker.update(rects)
|
537 |
+
for (objectId, bbox) in objects.items():
|
538 |
+
x1, y1, x2, y2 = bbox
|
539 |
+
x1 = int(x1)
|
540 |
+
y1 = int(y1)
|
541 |
+
x2 = int(x2)
|
542 |
+
y2 = int(y2)
|
543 |
+
|
544 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
545 |
+
text = "ID: {}".format(objectId)
|
546 |
+
# print(text)
|
547 |
+
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
548 |
+
if objectId not in object_id_list:
|
549 |
+
object_id_list.append(objectId)
|
550 |
+
fps_end_time = datetime.datetime.now()
|
551 |
+
time_diff = fps_end_time - fps_start_time
|
552 |
+
if time_diff.seconds == 0:
|
553 |
+
fps = 0.0
|
554 |
+
else:
|
555 |
+
fps = (total_frames / time_diff.seconds)
|
556 |
+
|
557 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
558 |
+
|
559 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
560 |
+
lpc_count = len(objects)
|
561 |
+
opc_count = len(object_id_list)
|
562 |
+
|
563 |
+
lpc_txt = "LPC: {}".format(lpc_count)
|
564 |
+
opc_txt = "OPC: {}".format(opc_count)
|
565 |
+
|
566 |
+
count += 1
|
567 |
+
if count % 4 != 0:
|
568 |
+
continue
|
569 |
+
# frame=cv.resize(frame, (600,500))
|
570 |
+
# cv2.line(frame, pt1, pt2,color,2)
|
571 |
+
# cv2.line(frame, pt3, pt4,color,2)
|
572 |
+
results = model(frame,size)
|
573 |
+
components = results.pandas().xyxy[0]
|
574 |
+
for index, row in results.pandas().xyxy[0].iterrows():
|
575 |
+
x1 = int(row['xmin'])
|
576 |
+
y1 = int(row['ymin'])
|
577 |
+
x2 = int(row['xmax'])
|
578 |
+
y2 = int(row['ymax'])
|
579 |
+
confidence = (row['confidence'])
|
580 |
+
obj = (row['class'])
|
581 |
+
|
582 |
+
|
583 |
+
# min':x1,'ymin':y1,'xmax':x2,'ymax':y2,'confidence':confidence,'Object':obj}
|
584 |
+
# if lpc_txt is not None:
|
585 |
+
# try:
|
586 |
+
# db["student Count"] = [lpc_txt]
|
587 |
+
# except:
|
588 |
+
# db["student Count"] = ['N/A']
|
589 |
+
if obj == 0:
|
590 |
+
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
591 |
+
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
|
592 |
+
rectcenter = int(rectx1),int(recty1)
|
593 |
+
cx = rectcenter[0]
|
594 |
+
cy = rectcenter[1]
|
595 |
+
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
|
596 |
+
cv2.putText(frame,str(b), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
|
597 |
+
|
598 |
+
db["student Count"] = [lpc_txt]
|
599 |
+
db['Date'] = [date_time]
|
600 |
+
db['id'] = ['N/A']
|
601 |
+
db['Mobile']=['N/A']
|
602 |
+
db['Watch'] = ['N/A']
|
603 |
+
if cy<(cy1+offset) and cy>(cy1-offset):
|
604 |
+
DB = []
|
605 |
+
counter+=1
|
606 |
+
DB.append(counter)
|
607 |
+
|
608 |
+
ff = DB[-1]
|
609 |
+
fx = str(ff)
|
610 |
+
# cv2.line(frame, pt1, pt2,(0, 0, 255),2)
|
611 |
+
# if cy<(cy2+offset) and cy>(cy2-offset):
|
612 |
+
|
613 |
+
# cv2.line(frame, pt3, pt4,(0, 0, 255),2)
|
614 |
+
font = cv2.FONT_HERSHEY_TRIPLEX
|
615 |
+
cv2.putText(frame,fx,(50, 50),font, 1,(0, 0, 255),2,cv2.LINE_4)
|
616 |
+
cv2.putText(frame,"Movement",(70, 70),font, 1,(0, 0, 255),2,cv2.LINE_4)
|
617 |
+
kpil2_text.write(f"<h5 style='text-align: left; color:red;'>{text}</h5>", unsafe_allow_html=True)
|
618 |
+
|
619 |
+
|
620 |
+
db['id'] = [text]
|
621 |
+
# myScreenshot = pyautogui.screenshot()
|
622 |
+
# if st.buttn("Dowload ss"):
|
623 |
+
# myScreenshot.save(r'name.png')
|
624 |
+
# myScreenshot.save(r'/home/anas/PersonTracking/AIComputerVision-master/pages/name.png')
|
625 |
+
if obj == 67:
|
626 |
+
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
627 |
+
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
|
628 |
+
rectcenter = int(rectx1),int(recty1)
|
629 |
+
cx = rectcenter[0]
|
630 |
+
cy = rectcenter[1]
|
631 |
+
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
|
632 |
+
cv2.putText(frame,str(mobile), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
|
633 |
+
cv2.putText(frame,'Mobile',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
|
634 |
+
kpil3_text.write(f"<h5 style='text-align: left; color:red;'>{mobile}{text}</h5>", unsafe_allow_html=True)
|
635 |
+
|
636 |
+
db['Mobile']=mobile+' '+text
|
637 |
+
# myScreenshot = pyautogui.screenshot()
|
638 |
+
# if st.buttn("Dowload ss"):
|
639 |
+
# myScreenshot.save(r'/home/anas/PersonTracking/AIComputerVision-master/pages/name.png')
|
640 |
+
# myScreenshot.save(r'name.png')
|
641 |
+
|
642 |
+
if obj == 75:
|
643 |
+
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
644 |
+
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
|
645 |
+
rectcenter = int(rectx1),int(recty1)
|
646 |
+
cx = rectcenter[0]
|
647 |
+
cy = rectcenter[1]
|
648 |
+
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
|
649 |
+
cv2.putText(frame,str(watch), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
|
650 |
+
cv2.putText(frame,'Watch',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
|
651 |
+
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{watch}</h5>", unsafe_allow_html=True)
|
652 |
+
|
653 |
+
|
654 |
+
db['Watch']=watch
|
655 |
+
myScreenshot = pyautogui.screenshot()
|
656 |
+
# if st.buttn("Dowload ss"):
|
657 |
+
# myScreenshot.save(r'/home/anas/PersonTracking/AIComputerVision-master/pages/name.png')
|
658 |
+
# myScreenshot.save(r'name.png')
|
659 |
+
|
660 |
+
|
661 |
+
|
662 |
+
kpil_text.write(f"<h5 style='text-align: left; color:red;'>{int(fps)}</h5>", unsafe_allow_html=True)
|
663 |
+
kpil5_text.write(f"<h5 style='text-align: left; color:red;'>{lpc_txt}</h5>", unsafe_allow_html=True)
|
664 |
+
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{width*height}</h5>",
|
665 |
+
unsafe_allow_html=True)
|
666 |
+
|
667 |
+
|
668 |
+
frame = cv.resize(frame,(0,0), fx=0.8, fy=0.8)
|
669 |
+
frame = image_resize(image=frame, width=640)
|
670 |
+
stframe.image(frame,channels='BGR', use_column_width=True)
|
671 |
+
df = pd.DataFrame(db)
|
672 |
+
df.to_csv('final.csv',mode='a',header=False,index=False)
|
673 |
+
except:
|
674 |
+
pass
|
675 |
+
with open('final.csv') as f:
|
676 |
+
st.download_button(label = 'Download Cheating Report',data=f,file_name='data.csv')
|
677 |
+
|
678 |
+
os.remove("final.csv")
|
679 |
+
main()
|
pages/LoginStatus.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
Id,Password
|
2 |
+
,gjk
|
3 |
+
yg,ghhg
|
pages/hashed_pw.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec0a6ccf9debf1c16781445c4b9106080d00478b0559469336db7c7b7b9711c8
|
3 |
+
size 5
|
pages/signup.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pickle
|
2 |
+
from pathlib import Path
|
3 |
+
import streamlit as st
|
4 |
+
import os
|
5 |
+
import pandas as pd
|
6 |
+
import csv
|
7 |
+
data = ['Id','Password']
|
8 |
+
|
9 |
+
# with open('LoginStatus.csv', 'w') as file:
|
10 |
+
# writer = csv.writer(file)
|
11 |
+
# writer.writerow(data)
|
12 |
+
db = {}
|
13 |
+
|
14 |
+
l1 = []
|
15 |
+
l2 = []
|
16 |
+
ids = st.text_input("Email Address")
|
17 |
+
password = st.text_input("Password",type="password",key="password")
|
18 |
+
# l1.append(ids)
|
19 |
+
# l2.append(password)
|
20 |
+
|
21 |
+
# l1.append(ids)
|
22 |
+
# l2.append(password)
|
23 |
+
key1 = "Id"
|
24 |
+
db.setdefault(key1, [])
|
25 |
+
db[key1].append(ids)
|
26 |
+
|
27 |
+
key2 = "password"
|
28 |
+
db.setdefault(key2, [])
|
29 |
+
db[key2].append(password)
|
30 |
+
|
31 |
+
# print(db)
|
32 |
+
# db['Id'] = l1
|
33 |
+
# db['Password'] = l2
|
34 |
+
# for i in db:
|
35 |
+
df = pd.DataFrame(db)
|
36 |
+
# st.write(db)
|
37 |
+
# df
|
38 |
+
if st.button("Add Data"):
|
39 |
+
df.to_csv('LoginStatus.csv', mode='a', header=False, index=False)
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
# import streamlit as st
|
44 |
+
# def check_password():
|
45 |
+
# """Returns `True` if the user had a correct password."""
|
46 |
+
|
47 |
+
# def password_entered():
|
48 |
+
# """Checks whether a password entered by the user is correct."""
|
49 |
+
# if (
|
50 |
+
# st.session_state["username"] in st.secrets["passwords"]
|
51 |
+
# and st.session_state["password"]
|
52 |
+
# == st.secrets["passwords"][st.session_state["username"]]
|
53 |
+
# ):
|
54 |
+
# st.session_state["password_correct"] = True
|
55 |
+
# del st.session_state["password"] # don't store username + password
|
56 |
+
# del st.session_state["username"]
|
57 |
+
# else:
|
58 |
+
# st.session_state["password_correct"] = False
|
59 |
+
|
60 |
+
# if "password_correct" not in st.session_state:
|
61 |
+
# # First run, show inputs for username + password.
|
62 |
+
# st.text_input("Username", on_change=password_entered, key="username")
|
63 |
+
# st.text_input(
|
64 |
+
# "Password", type="password", on_change=password_entered, key="password"
|
65 |
+
# )
|
66 |
+
# return False
|
67 |
+
# elif not st.session_state["password_correct"]:
|
68 |
+
# # Password not correct, show input + error.
|
69 |
+
# st.text_input("Username", on_change=password_entered, key="username")
|
70 |
+
# st.text_input(
|
71 |
+
# "Password", type="password", on_change=password_entered, key="password"
|
72 |
+
# )
|
73 |
+
# st.error("😕 User not known or password incorrect")
|
74 |
+
# return False
|
75 |
+
# else:
|
76 |
+
# # Password correct.
|
77 |
+
# return True
|
78 |
+
|
79 |
+
# if check_password():
|
80 |
+
# st.write("Here goes your normal Streamlit app...")
|
81 |
+
# st.button("Click me")
|
person_counter.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import datetime
|
3 |
+
import imutils
|
4 |
+
import numpy as np
|
5 |
+
from centroidtracker import CentroidTracker
|
6 |
+
|
7 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
8 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
9 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
10 |
+
detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
11 |
+
detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
12 |
+
|
13 |
+
|
14 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
15 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
16 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
17 |
+
"sofa", "train", "tvmonitor"]
|
18 |
+
|
19 |
+
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
|
20 |
+
|
21 |
+
|
22 |
+
def non_max_suppression_fast(boxes, overlapThresh):
|
23 |
+
try:
|
24 |
+
if len(boxes) == 0:
|
25 |
+
return []
|
26 |
+
|
27 |
+
if boxes.dtype.kind == "i":
|
28 |
+
boxes = boxes.astype("float")
|
29 |
+
|
30 |
+
pick = []
|
31 |
+
|
32 |
+
x1 = boxes[:, 0]
|
33 |
+
y1 = boxes[:, 1]
|
34 |
+
x2 = boxes[:, 2]
|
35 |
+
y2 = boxes[:, 3]
|
36 |
+
|
37 |
+
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
38 |
+
idxs = np.argsort(y2)
|
39 |
+
|
40 |
+
while len(idxs) > 0:
|
41 |
+
last = len(idxs) - 1
|
42 |
+
i = idxs[last]
|
43 |
+
pick.append(i)
|
44 |
+
|
45 |
+
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
46 |
+
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
47 |
+
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
48 |
+
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
49 |
+
|
50 |
+
w = np.maximum(0, xx2 - xx1 + 1)
|
51 |
+
h = np.maximum(0, yy2 - yy1 + 1)
|
52 |
+
|
53 |
+
overlap = (w * h) / area[idxs[:last]]
|
54 |
+
|
55 |
+
idxs = np.delete(idxs, np.concatenate(([last],
|
56 |
+
np.where(overlap > overlapThresh)[0])))
|
57 |
+
|
58 |
+
return boxes[pick].astype("int")
|
59 |
+
except Exception as e:
|
60 |
+
print("Exception occurred in non_max_suppression : {}".format(e))
|
61 |
+
|
62 |
+
|
63 |
+
def main():
|
64 |
+
cap = cv2.VideoCapture('test_video.mp4')
|
65 |
+
|
66 |
+
fps_start_time = datetime.datetime.now()
|
67 |
+
fps = 0
|
68 |
+
total_frames = 0
|
69 |
+
lpc_count = 0
|
70 |
+
opc_count = 0
|
71 |
+
object_id_list = []
|
72 |
+
while True:
|
73 |
+
ret, frame = cap.read()
|
74 |
+
frame = imutils.resize(frame, width=600)
|
75 |
+
total_frames = total_frames + 1
|
76 |
+
|
77 |
+
(H, W) = frame.shape[:2]
|
78 |
+
|
79 |
+
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
|
80 |
+
|
81 |
+
detector.setInput(blob)
|
82 |
+
person_detections = detector.forward()
|
83 |
+
rects = []
|
84 |
+
for i in np.arange(0, person_detections.shape[2]):
|
85 |
+
confidence = person_detections[0, 0, i, 2]
|
86 |
+
if confidence > 0.5:
|
87 |
+
idx = int(person_detections[0, 0, i, 1])
|
88 |
+
|
89 |
+
if CLASSES[idx] != "person":
|
90 |
+
continue
|
91 |
+
|
92 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
93 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
94 |
+
rects.append(person_box)
|
95 |
+
|
96 |
+
boundingboxes = np.array(rects)
|
97 |
+
boundingboxes = boundingboxes.astype(int)
|
98 |
+
rects = non_max_suppression_fast(boundingboxes, 0.3)
|
99 |
+
|
100 |
+
objects = tracker.update(rects)
|
101 |
+
for (objectId, bbox) in objects.items():
|
102 |
+
x1, y1, x2, y2 = bbox
|
103 |
+
x1 = int(x1)
|
104 |
+
y1 = int(y1)
|
105 |
+
x2 = int(x2)
|
106 |
+
y2 = int(y2)
|
107 |
+
|
108 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
109 |
+
text = "ID: {}".format(objectId)
|
110 |
+
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
111 |
+
|
112 |
+
if objectId not in object_id_list:
|
113 |
+
object_id_list.append(objectId)
|
114 |
+
|
115 |
+
fps_end_time = datetime.datetime.now()
|
116 |
+
time_diff = fps_end_time - fps_start_time
|
117 |
+
if time_diff.seconds == 0:
|
118 |
+
fps = 0.0
|
119 |
+
else:
|
120 |
+
fps = (total_frames / time_diff.seconds)
|
121 |
+
|
122 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
123 |
+
|
124 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
125 |
+
|
126 |
+
lpc_count = len(objects)
|
127 |
+
opc_count = len(object_id_list)
|
128 |
+
|
129 |
+
lpc_txt = "LPC: {}".format(lpc_count)
|
130 |
+
opc_txt = "OPC: {}".format(opc_count)
|
131 |
+
|
132 |
+
cv2.putText(frame, lpc_txt, (5, 60), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
133 |
+
cv2.putText(frame, opc_txt, (5, 90), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
134 |
+
|
135 |
+
cv2.imshow("Application", frame)
|
136 |
+
key = cv2.waitKey(1)
|
137 |
+
if key == ord('q'):
|
138 |
+
break
|
139 |
+
|
140 |
+
cv2.destroyAllWindows()
|
141 |
+
|
142 |
+
|
143 |
+
main()
|
person_detection_image.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import imutils
|
4 |
+
|
5 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
6 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
7 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
8 |
+
|
9 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
10 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
11 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
12 |
+
"sofa", "train", "tvmonitor"]
|
13 |
+
|
14 |
+
|
15 |
+
def main():
|
16 |
+
image = cv2.imread('people.jpg')
|
17 |
+
image = imutils.resize(image, width=600)
|
18 |
+
|
19 |
+
(H, W) = image.shape[:2]
|
20 |
+
|
21 |
+
blob = cv2.dnn.blobFromImage(image, 0.007843, (W, H), 127.5)
|
22 |
+
|
23 |
+
detector.setInput(blob)
|
24 |
+
person_detections = detector.forward()
|
25 |
+
|
26 |
+
for i in np.arange(0, person_detections.shape[2]):
|
27 |
+
confidence = person_detections[0, 0, i, 2]
|
28 |
+
if confidence > 0.5:
|
29 |
+
idx = int(person_detections[0, 0, i, 1])
|
30 |
+
|
31 |
+
if CLASSES[idx] != "person":
|
32 |
+
continue
|
33 |
+
|
34 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
35 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
36 |
+
|
37 |
+
cv2.rectangle(image, (startX, startY), (endX, endY), (0, 0, 255), 2)
|
38 |
+
|
39 |
+
cv2.imshow("Results", image)
|
40 |
+
cv2.waitKey(0)
|
41 |
+
cv2.destroyAllWindows()
|
42 |
+
|
43 |
+
main()
|
person_detection_video.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import datetime
|
3 |
+
import imutils
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
7 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
8 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
9 |
+
# Only enable it if you are using OpenVino environment
|
10 |
+
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
11 |
+
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
12 |
+
|
13 |
+
|
14 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
15 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
16 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
17 |
+
"sofa", "train", "tvmonitor"]
|
18 |
+
|
19 |
+
|
20 |
+
def main():
|
21 |
+
cap = cv2.VideoCapture('test_video.mp4')
|
22 |
+
|
23 |
+
fps_start_time = datetime.datetime.now()
|
24 |
+
fps = 0
|
25 |
+
total_frames = 0
|
26 |
+
|
27 |
+
while True:
|
28 |
+
ret, frame = cap.read()
|
29 |
+
frame = imutils.resize(frame, width=600)
|
30 |
+
total_frames = total_frames + 1
|
31 |
+
|
32 |
+
(H, W) = frame.shape[:2]
|
33 |
+
|
34 |
+
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
|
35 |
+
|
36 |
+
detector.setInput(blob)
|
37 |
+
person_detections = detector.forward()
|
38 |
+
|
39 |
+
for i in np.arange(0, person_detections.shape[2]):
|
40 |
+
confidence = person_detections[0, 0, i, 2]
|
41 |
+
if confidence > 0.5:
|
42 |
+
idx = int(person_detections[0, 0, i, 1])
|
43 |
+
|
44 |
+
if CLASSES[idx] != "person":
|
45 |
+
continue
|
46 |
+
|
47 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
48 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
49 |
+
|
50 |
+
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2)
|
51 |
+
|
52 |
+
fps_end_time = datetime.datetime.now()
|
53 |
+
time_diff = fps_end_time - fps_start_time
|
54 |
+
if time_diff.seconds == 0:
|
55 |
+
fps = 0.0
|
56 |
+
else:
|
57 |
+
fps = (total_frames / time_diff.seconds)
|
58 |
+
|
59 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
60 |
+
|
61 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
62 |
+
|
63 |
+
cv2.imshow("Application", frame)
|
64 |
+
key = cv2.waitKey(1)
|
65 |
+
if key == ord('q'):
|
66 |
+
break
|
67 |
+
|
68 |
+
cv2.destroyAllWindows()
|
69 |
+
|
70 |
+
|
71 |
+
main()
|
person_tracking.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import datetime
|
3 |
+
import imutils
|
4 |
+
import numpy as np
|
5 |
+
from centroidtracker import CentroidTracker
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
import streamlit as st
|
9 |
+
import mediapipe as mp
|
10 |
+
import cv2 as cv
|
11 |
+
import numpy as np
|
12 |
+
import tempfile
|
13 |
+
import time
|
14 |
+
from PIL import Image
|
15 |
+
import pandas as pd
|
16 |
+
import torch
|
17 |
+
import base64
|
18 |
+
import streamlit.components.v1 as components
|
19 |
+
import csv
|
20 |
+
import pickle
|
21 |
+
from pathlib import Path
|
22 |
+
import streamlit_authenticator as stauth
|
23 |
+
import os
|
24 |
+
import csv
|
25 |
+
# x-x-x-x-x-x-x-x-x-x-x-x-x-x LOGIN FORM x-x-x-x-x-x-x-x-x
|
26 |
+
|
27 |
+
|
28 |
+
import streamlit as st
|
29 |
+
import pandas as pd
|
30 |
+
import hashlib
|
31 |
+
import sqlite3
|
32 |
+
#
|
33 |
+
|
34 |
+
import pickle
|
35 |
+
from pathlib import Path
|
36 |
+
import streamlit_authenticator as stauth
|
37 |
+
# print("Done !!!")
|
38 |
+
|
39 |
+
data = ["student Count",'Date','Id','Mobile','Watch']
|
40 |
+
with open('final.csv', 'w') as file:
|
41 |
+
writer = csv.writer(file)
|
42 |
+
writer.writerow(data)
|
43 |
+
|
44 |
+
|
45 |
+
l1 = []
|
46 |
+
l2 = []
|
47 |
+
if st.button('signup'):
|
48 |
+
|
49 |
+
|
50 |
+
usernames = st.text_input('Username')
|
51 |
+
pwd = st.text_input('Password')
|
52 |
+
l1.append(usernames)
|
53 |
+
l2.append(pwd)
|
54 |
+
|
55 |
+
names = ["dmin", "ser"]
|
56 |
+
if st.button("signupsss"):
|
57 |
+
username =l1
|
58 |
+
|
59 |
+
password =l2
|
60 |
+
|
61 |
+
hashed_passwords =stauth.Hasher(password).generate()
|
62 |
+
|
63 |
+
file_path = Path(__file__).parent / "hashed_pw.pkl"
|
64 |
+
|
65 |
+
with file_path.open("wb") as file:
|
66 |
+
pickle.dump(hashed_passwords, file)
|
67 |
+
|
68 |
+
|
69 |
+
elif st.button('Logins'):
|
70 |
+
names = ['dmin', 'ser']
|
71 |
+
|
72 |
+
username =l1
|
73 |
+
|
74 |
+
file_path = Path(__file__).parent / 'hashed_pw.pkl'
|
75 |
+
|
76 |
+
with file_path.open('rb') as file:
|
77 |
+
hashed_passwords = pickle.load(file)
|
78 |
+
|
79 |
+
authenticator = stauth.Authenticate(names,username,hashed_passwords,'Cheating Detection','abcdefg',cookie_expiry_days=180)
|
80 |
+
|
81 |
+
name,authentication_status,username= authenticator.login('Login','main')
|
82 |
+
|
83 |
+
|
84 |
+
if authentication_status == False:
|
85 |
+
st.error('Username/Password is incorrect')
|
86 |
+
|
87 |
+
if authentication_status == None:
|
88 |
+
st.error('Please enter a username and password')
|
89 |
+
|
90 |
+
if authentication_status:
|
91 |
+
date_time = time.strftime("%b %d %Y %-I:%M %p")
|
92 |
+
date = date_time.split()
|
93 |
+
dates = date[0:3]
|
94 |
+
times = date[3:5]
|
95 |
+
# x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xAPPLICACTION -x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
|
96 |
+
|
97 |
+
def non_max_suppression_fast(boxes, overlapThresh):
|
98 |
+
try:
|
99 |
+
if len(boxes) == 0:
|
100 |
+
return []
|
101 |
+
|
102 |
+
if boxes.dtype.kind == "i":
|
103 |
+
boxes = boxes.astype("float")
|
104 |
+
|
105 |
+
pick = []
|
106 |
+
|
107 |
+
x1 = boxes[:, 0]
|
108 |
+
y1 = boxes[:, 1]
|
109 |
+
x2 = boxes[:, 2]
|
110 |
+
y2 = boxes[:, 3]
|
111 |
+
|
112 |
+
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
113 |
+
idxs = np.argsort(y2)
|
114 |
+
|
115 |
+
while len(idxs) > 0:
|
116 |
+
last = len(idxs) - 1
|
117 |
+
i = idxs[last]
|
118 |
+
pick.append(i)
|
119 |
+
|
120 |
+
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
121 |
+
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
122 |
+
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
123 |
+
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
124 |
+
|
125 |
+
w = np.maximum(0, xx2 - xx1 + 1)
|
126 |
+
h = np.maximum(0, yy2 - yy1 + 1)
|
127 |
+
|
128 |
+
overlap = (w * h) / area[idxs[:last]]
|
129 |
+
|
130 |
+
idxs = np.delete(idxs, np.concatenate(([last],
|
131 |
+
np.where(overlap > overlapThresh)[0])))
|
132 |
+
|
133 |
+
return boxes[pick].astype("int")
|
134 |
+
except Exception as e:
|
135 |
+
print("Exception occurred in non_max_suppression : {}".format(e))
|
136 |
+
|
137 |
+
|
138 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
139 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
140 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
141 |
+
# Only enable it if you are using OpenVino environment
|
142 |
+
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
143 |
+
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
144 |
+
|
145 |
+
|
146 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
147 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
148 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
149 |
+
"sofa", "train", "tvmonitor"]
|
150 |
+
|
151 |
+
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
|
152 |
+
|
153 |
+
st.markdown(
|
154 |
+
"""
|
155 |
+
<style>
|
156 |
+
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
|
157 |
+
width: 350px
|
158 |
+
}
|
159 |
+
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
|
160 |
+
width: 350px
|
161 |
+
margin-left: -350px
|
162 |
+
}
|
163 |
+
</style>
|
164 |
+
""",
|
165 |
+
unsafe_allow_html=True,
|
166 |
+
)
|
167 |
+
hide_streamlit_style = """
|
168 |
+
<style>
|
169 |
+
#MainMenu {visibility: hidden;}
|
170 |
+
footer {visibility: hidden;}
|
171 |
+
</style>
|
172 |
+
"""
|
173 |
+
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
|
174 |
+
|
175 |
+
|
176 |
+
# Resize Images to fit Container
|
177 |
+
@st.cache()
|
178 |
+
# Get Image Dimensions
|
179 |
+
def image_resize(image, width=None, height=None, inter=cv.INTER_AREA):
|
180 |
+
dim = None
|
181 |
+
(h,w) = image.shape[:2]
|
182 |
+
|
183 |
+
if width is None and height is None:
|
184 |
+
return image
|
185 |
+
|
186 |
+
if width is None:
|
187 |
+
r = width/float(w)
|
188 |
+
dim = (int(w*r),height)
|
189 |
+
|
190 |
+
else:
|
191 |
+
r = width/float(w)
|
192 |
+
dim = width, int(h*r)
|
193 |
+
|
194 |
+
# Resize image
|
195 |
+
resized = cv.resize(image,dim,interpolation=inter)
|
196 |
+
|
197 |
+
return resized
|
198 |
+
|
199 |
+
# About Page
|
200 |
+
authenticator.logout('Logout')
|
201 |
+
app_mode = st.sidebar.selectbox(
|
202 |
+
'App Mode',
|
203 |
+
['About','Application']
|
204 |
+
)
|
205 |
+
if app_mode == 'About':
|
206 |
+
st.title('About Product And Team')
|
207 |
+
st.markdown('''
|
208 |
+
Imran Bhai Project
|
209 |
+
''')
|
210 |
+
st.markdown(
|
211 |
+
"""
|
212 |
+
<style>
|
213 |
+
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
|
214 |
+
width: 350px
|
215 |
+
}
|
216 |
+
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
|
217 |
+
width: 350px
|
218 |
+
margin-left: -350px
|
219 |
+
}
|
220 |
+
</style>
|
221 |
+
""",
|
222 |
+
unsafe_allow_html=True,
|
223 |
+
)
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
elif app_mode == 'Application':
|
229 |
+
|
230 |
+
st.set_option('deprecation.showfileUploaderEncoding', False)
|
231 |
+
|
232 |
+
use_webcam = st.button('Use Webcam')
|
233 |
+
# record = st.sidebar.checkbox("Record Video")
|
234 |
+
|
235 |
+
# if record:
|
236 |
+
# st.checkbox('Recording', True)
|
237 |
+
|
238 |
+
# drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
|
239 |
+
|
240 |
+
# st.sidebar.markdown('---')
|
241 |
+
|
242 |
+
# ## Add Sidebar and Window style
|
243 |
+
# st.markdown(
|
244 |
+
# """
|
245 |
+
# <style>
|
246 |
+
# [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
|
247 |
+
# width: 350px
|
248 |
+
# }
|
249 |
+
# [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
|
250 |
+
# width: 350px
|
251 |
+
# margin-left: -350px
|
252 |
+
# }
|
253 |
+
# </style>
|
254 |
+
# """,
|
255 |
+
# unsafe_allow_html=True,
|
256 |
+
# )
|
257 |
+
|
258 |
+
# max_faces = st.sidebar.number_input('Maximum Number of Faces', value=5, min_value=1)
|
259 |
+
# st.sidebar.markdown('---')
|
260 |
+
# detection_confidence = st.sidebar.slider('Min Detection Confidence', min_value=0.0,max_value=1.0,value=0.5)
|
261 |
+
# tracking_confidence = st.sidebar.slider('Min Tracking Confidence', min_value=0.0,max_value=1.0,value=0.5)
|
262 |
+
# st.sidebar.markdown('---')
|
263 |
+
|
264 |
+
## Get Video
|
265 |
+
stframe = st.empty()
|
266 |
+
video_file_buffer = st.file_uploader("Upload a Video", type=['mp4', 'mov', 'avi', 'asf', 'm4v'])
|
267 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False)
|
268 |
+
|
269 |
+
|
270 |
+
if not video_file_buffer:
|
271 |
+
if use_webcam:
|
272 |
+
video = cv.VideoCapture(0)
|
273 |
+
else:
|
274 |
+
try:
|
275 |
+
video = cv.VideoCapture(1)
|
276 |
+
temp_file.name = video
|
277 |
+
except:
|
278 |
+
pass
|
279 |
+
else:
|
280 |
+
temp_file.write(video_file_buffer.read())
|
281 |
+
video = cv.VideoCapture(temp_file.name)
|
282 |
+
|
283 |
+
width = int(video.get(cv.CAP_PROP_FRAME_WIDTH))
|
284 |
+
height = int(video.get(cv.CAP_PROP_FRAME_HEIGHT))
|
285 |
+
fps_input = int(video.get(cv.CAP_PROP_FPS))
|
286 |
+
|
287 |
+
## Recording
|
288 |
+
codec = cv.VideoWriter_fourcc('a','v','c','1')
|
289 |
+
out = cv.VideoWriter('output1.mp4', codec, fps_input, (width,height))
|
290 |
+
|
291 |
+
st.sidebar.text('Input Video')
|
292 |
+
# st.sidebar.video(temp_file.name)
|
293 |
+
|
294 |
+
fps = 0
|
295 |
+
i = 0
|
296 |
+
|
297 |
+
drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
|
298 |
+
|
299 |
+
kpil, kpil2, kpil3,kpil4,kpil5, kpil6 = st.columns(6)
|
300 |
+
|
301 |
+
with kpil:
|
302 |
+
st.markdown('**Frame Rate**')
|
303 |
+
kpil_text = st.markdown('0')
|
304 |
+
|
305 |
+
with kpil2:
|
306 |
+
st.markdown('**detection ID**')
|
307 |
+
kpil2_text = st.markdown('0')
|
308 |
+
|
309 |
+
with kpil3:
|
310 |
+
st.markdown('**Mobile**')
|
311 |
+
kpil3_text = st.markdown('0')
|
312 |
+
with kpil4:
|
313 |
+
st.markdown('**Watch**')
|
314 |
+
kpil4_text = st.markdown('0')
|
315 |
+
with kpil5:
|
316 |
+
st.markdown('**Count**')
|
317 |
+
kpil5_text = st.markdown('0')
|
318 |
+
with kpil6:
|
319 |
+
st.markdown('**Img Res**')
|
320 |
+
kpil6_text = st.markdown('0')
|
321 |
+
|
322 |
+
|
323 |
+
|
324 |
+
st.markdown('<hr/>', unsafe_allow_html=True)
|
325 |
+
# try:
|
326 |
+
def main():
|
327 |
+
db = {}
|
328 |
+
|
329 |
+
# cap = cv2.VideoCapture('//home//anas//PersonTracking//WebUI//movement.mp4')
|
330 |
+
path='/usr/local/lib/python3.10/dist-packages/yolo0vs5/yolov5s-int8.tflite'
|
331 |
+
#count=0
|
332 |
+
custom = 'yolov5s'
|
333 |
+
|
334 |
+
model = torch.hub.load('/usr/local/lib/python3.10/dist-packages/yolovs5', custom, path,source='local',force_reload=True)
|
335 |
+
|
336 |
+
b=model.names[0] = 'person'
|
337 |
+
mobile = model.names[67] = 'cell phone'
|
338 |
+
watch = model.names[75] = 'clock'
|
339 |
+
|
340 |
+
fps_start_time = datetime.datetime.now()
|
341 |
+
fps = 0
|
342 |
+
size=416
|
343 |
+
|
344 |
+
count=0
|
345 |
+
counter=0
|
346 |
+
|
347 |
+
|
348 |
+
color=(0,0,255)
|
349 |
+
|
350 |
+
cy1=250
|
351 |
+
offset=6
|
352 |
+
|
353 |
+
|
354 |
+
pt1 = (120, 100)
|
355 |
+
pt2 = (980, 1150)
|
356 |
+
color = (0, 255, 0)
|
357 |
+
|
358 |
+
pt3 = (283, 103)
|
359 |
+
pt4 = (1500, 1150)
|
360 |
+
|
361 |
+
cy2 = 500
|
362 |
+
color = (0, 255, 0)
|
363 |
+
total_frames = 0
|
364 |
+
prevTime = 0
|
365 |
+
cur_frame = 0
|
366 |
+
count=0
|
367 |
+
counter=0
|
368 |
+
fps_start_time = datetime.datetime.now()
|
369 |
+
fps = 0
|
370 |
+
total_frames = 0
|
371 |
+
lpc_count = 0
|
372 |
+
opc_count = 0
|
373 |
+
object_id_list = []
|
374 |
+
# success = True
|
375 |
+
if st.button("Detect"):
|
376 |
+
try:
|
377 |
+
while video.isOpened():
|
378 |
+
|
379 |
+
ret, frame = video.read()
|
380 |
+
frame = imutils.resize(frame, width=600)
|
381 |
+
total_frames = total_frames + 1
|
382 |
+
|
383 |
+
(H, W) = frame.shape[:2]
|
384 |
+
|
385 |
+
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
|
386 |
+
|
387 |
+
detector.setInput(blob)
|
388 |
+
person_detections = detector.forward()
|
389 |
+
rects = []
|
390 |
+
for i in np.arange(0, person_detections.shape[2]):
|
391 |
+
confidence = person_detections[0, 0, i, 2]
|
392 |
+
if confidence > 0.5:
|
393 |
+
idx = int(person_detections[0, 0, i, 1])
|
394 |
+
|
395 |
+
if CLASSES[idx] != "person":
|
396 |
+
continue
|
397 |
+
|
398 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
399 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
400 |
+
rects.append(person_box)
|
401 |
+
|
402 |
+
boundingboxes = np.array(rects)
|
403 |
+
boundingboxes = boundingboxes.astype(int)
|
404 |
+
rects = non_max_suppression_fast(boundingboxes, 0.3)
|
405 |
+
|
406 |
+
objects = tracker.update(rects)
|
407 |
+
for (objectId, bbox) in objects.items():
|
408 |
+
x1, y1, x2, y2 = bbox
|
409 |
+
x1 = int(x1)
|
410 |
+
y1 = int(y1)
|
411 |
+
x2 = int(x2)
|
412 |
+
y2 = int(y2)
|
413 |
+
|
414 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
|
415 |
+
text = "ID: {}".format(objectId)
|
416 |
+
# print(text)
|
417 |
+
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
418 |
+
if objectId not in object_id_list:
|
419 |
+
object_id_list.append(objectId)
|
420 |
+
fps_end_time = datetime.datetime.now()
|
421 |
+
time_diff = fps_end_time - fps_start_time
|
422 |
+
if time_diff.seconds == 0:
|
423 |
+
fps = 0.0
|
424 |
+
else:
|
425 |
+
fps = (total_frames / time_diff.seconds)
|
426 |
+
|
427 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
428 |
+
|
429 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
430 |
+
lpc_count = len(objects)
|
431 |
+
opc_count = len(object_id_list)
|
432 |
+
|
433 |
+
lpc_txt = "LPC: {}".format(lpc_count)
|
434 |
+
opc_txt = "OPC: {}".format(opc_count)
|
435 |
+
|
436 |
+
count += 1
|
437 |
+
if count % 4 != 0:
|
438 |
+
continue
|
439 |
+
# frame=cv.resize(frame, (600,500))
|
440 |
+
# cv2.line(frame, pt1, pt2,color,2)
|
441 |
+
# cv2.line(frame, pt3, pt4,color,2)
|
442 |
+
results = model(frame,size)
|
443 |
+
components = results.pandas().xyxy[0]
|
444 |
+
for index, row in results.pandas().xyxy[0].iterrows():
|
445 |
+
x1 = int(row['xmin'])
|
446 |
+
y1 = int(row['ymin'])
|
447 |
+
x2 = int(row['xmax'])
|
448 |
+
y2 = int(row['ymax'])
|
449 |
+
confidence = (row['confidence'])
|
450 |
+
obj = (row['class'])
|
451 |
+
|
452 |
+
|
453 |
+
# min':x1,'ymin':y1,'xmax':x2,'ymax':y2,'confidence':confidence,'Object':obj}
|
454 |
+
# if lpc_txt is not None:
|
455 |
+
# try:
|
456 |
+
# db["student Count"] = [lpc_txt]
|
457 |
+
# except:
|
458 |
+
# db["student Count"] = ['N/A']
|
459 |
+
if obj == 0:
|
460 |
+
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
461 |
+
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
|
462 |
+
rectcenter = int(rectx1),int(recty1)
|
463 |
+
cx = rectcenter[0]
|
464 |
+
cy = rectcenter[1]
|
465 |
+
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
|
466 |
+
cv2.putText(frame,str(b), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
|
467 |
+
|
468 |
+
db["student Count"] = [lpc_txt]
|
469 |
+
db['Date'] = [date_time]
|
470 |
+
db['id'] = ['N/A']
|
471 |
+
db['Mobile']=['N/A']
|
472 |
+
db['Watch'] = ['N/A']
|
473 |
+
if cy<(cy1+offset) and cy>(cy1-offset):
|
474 |
+
DB = []
|
475 |
+
counter+=1
|
476 |
+
DB.append(counter)
|
477 |
+
|
478 |
+
ff = DB[-1]
|
479 |
+
fx = str(ff)
|
480 |
+
# cv2.line(frame, pt1, pt2,(0, 0, 255),2)
|
481 |
+
# if cy<(cy2+offset) and cy>(cy2-offset):
|
482 |
+
|
483 |
+
# cv2.line(frame, pt3, pt4,(0, 0, 255),2)
|
484 |
+
font = cv2.FONT_HERSHEY_TRIPLEX
|
485 |
+
cv2.putText(frame,fx,(50, 50),font, 1,(0, 0, 255),2,cv2.LINE_4)
|
486 |
+
cv2.putText(frame,"Movement",(70, 70),font, 1,(0, 0, 255),2,cv2.LINE_4)
|
487 |
+
kpil2_text.write(f"<h5 style='text-align: left; color:red;'>{text}</h5>", unsafe_allow_html=True)
|
488 |
+
|
489 |
+
|
490 |
+
db['id'] = [text]
|
491 |
+
|
492 |
+
|
493 |
+
|
494 |
+
if obj == 67:
|
495 |
+
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
496 |
+
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
|
497 |
+
rectcenter = int(rectx1),int(recty1)
|
498 |
+
cx = rectcenter[0]
|
499 |
+
cy = rectcenter[1]
|
500 |
+
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
|
501 |
+
cv2.putText(frame,str(mobile), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
|
502 |
+
cv2.putText(frame,'Mobile',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
|
503 |
+
kpil3_text.write(f"<h5 style='text-align: left; color:red;'>{mobile}{text}</h5>", unsafe_allow_html=True)
|
504 |
+
|
505 |
+
db['Mobile']=mobile+' '+text
|
506 |
+
|
507 |
+
|
508 |
+
|
509 |
+
if obj == 75:
|
510 |
+
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
|
511 |
+
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
|
512 |
+
rectcenter = int(rectx1),int(recty1)
|
513 |
+
cx = rectcenter[0]
|
514 |
+
cy = rectcenter[1]
|
515 |
+
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
|
516 |
+
cv2.putText(frame,str(watch), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
|
517 |
+
cv2.putText(frame,'Watch',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
|
518 |
+
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{watch}</h5>", unsafe_allow_html=True)
|
519 |
+
|
520 |
+
|
521 |
+
db['Watch']=watch
|
522 |
+
|
523 |
+
|
524 |
+
|
525 |
+
kpil_text.write(f"<h5 style='text-align: left; color:red;'>{int(fps)}</h5>", unsafe_allow_html=True)
|
526 |
+
kpil5_text.write(f"<h5 style='text-align: left; color:red;'>{lpc_txt}</h5>", unsafe_allow_html=True)
|
527 |
+
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{width*height}</h5>",
|
528 |
+
unsafe_allow_html=True)
|
529 |
+
|
530 |
+
|
531 |
+
frame = cv.resize(frame,(0,0), fx=0.8, fy=0.8)
|
532 |
+
frame = image_resize(image=frame, width=640)
|
533 |
+
stframe.image(frame,channels='BGR', use_column_width=True)
|
534 |
+
df = pd.DataFrame(db)
|
535 |
+
df.to_csv('final.csv',mode='a',header=False,index=False)
|
536 |
+
except:
|
537 |
+
pass
|
538 |
+
with open('final.csv') as f:
|
539 |
+
st.download_button(label = 'Download Cheating Report',data=f,file_name='data.csv')
|
540 |
+
|
541 |
+
os.remove("final.csv")
|
542 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.3.0
|
2 |
+
altair==4.2.0
|
3 |
+
asttokens==2.1.0
|
4 |
+
astunparse==1.6.3
|
5 |
+
attrs==22.1.0
|
6 |
+
backcall==0.2.0
|
7 |
+
bcrypt==4.0.1
|
8 |
+
blinker==1.5
|
9 |
+
cachetools==5.2.0
|
10 |
+
centroid-tracker==0.0.9
|
11 |
+
certifi==2022.9.24
|
12 |
+
charset-normalizer==2.1.1
|
13 |
+
click==8.1.3
|
14 |
+
commonmark==0.9.1
|
15 |
+
contourpy==1.0.6
|
16 |
+
cvzone==1.5.6
|
17 |
+
cycler==0.11.0
|
18 |
+
decorator==5.1.1
|
19 |
+
entrypoints==0.4
|
20 |
+
executing==1.2.0
|
21 |
+
extra-streamlit-components==0.1.56
|
22 |
+
flatbuffers==22.11.23
|
23 |
+
fonttools==4.38.0
|
24 |
+
gast==0.4.0
|
25 |
+
gitdb==4.0.9
|
26 |
+
GitPython==3.1.29
|
27 |
+
google-auth==2.14.1
|
28 |
+
google-auth-oauthlib==0.4.6
|
29 |
+
google-pasta==0.2.0
|
30 |
+
grpcio==1.51.0
|
31 |
+
h5py==3.7.0
|
32 |
+
idna==3.4
|
33 |
+
importlib-metadata==5.1.0
|
34 |
+
imutils==0.5.4
|
35 |
+
ipython==8.6.0
|
36 |
+
jedi==0.18.2
|
37 |
+
Jinja2==3.1.2
|
38 |
+
jsonschema==4.17.1
|
39 |
+
keras==2.11.0
|
40 |
+
kiwisolver==1.4.4
|
41 |
+
libclang==14.0.6
|
42 |
+
Markdown==3.4.1
|
43 |
+
MarkupSafe==2.1.1
|
44 |
+
matplotlib==3.6.2
|
45 |
+
matplotlib-inline==0.1.6
|
46 |
+
mediapipe==0.9.0
|
47 |
+
numpy==1.23.5
|
48 |
+
nvidia-cublas-cu11==11.10.3.66
|
49 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
50 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
51 |
+
nvidia-cudnn-cu11==8.5.0.96
|
52 |
+
oauthlib==3.2.2
|
53 |
+
opencv-contrib-python==4.6.0.66
|
54 |
+
opencv-python==4.6.0.66
|
55 |
+
opt-einsum==3.3.0
|
56 |
+
packaging==21.3
|
57 |
+
pafy==0.5.5
|
58 |
+
pandas==1.5.1
|
59 |
+
parso==0.8.3
|
60 |
+
pexpect==4.8.0
|
61 |
+
pickleshare==0.7.5
|
62 |
+
Pillow==9.3.0
|
63 |
+
prompt-toolkit==3.0.33
|
64 |
+
protobuf==3.19.6
|
65 |
+
psutil==5.9.4
|
66 |
+
ptyprocess==0.7.0
|
67 |
+
pure-eval==0.2.2
|
68 |
+
pyarrow==10.0.1
|
69 |
+
pyasn1==0.4.8
|
70 |
+
pyasn1-modules==0.2.8
|
71 |
+
pydeck==0.8.0
|
72 |
+
Pygments==2.13.0
|
73 |
+
PyJWT==2.6.0
|
74 |
+
Pympler==1.0.1
|
75 |
+
pyparsing==3.0.9
|
76 |
+
pyrsistent==0.19.2
|
77 |
+
python-dateutil==2.8.2
|
78 |
+
pytz==2022.6
|
79 |
+
pytz-deprecation-shim==0.1.0.post0
|
80 |
+
PyYAML==6.0
|
81 |
+
requests==2.28.1
|
82 |
+
requests-oauthlib==1.3.1
|
83 |
+
rich==12.6.0
|
84 |
+
rsa==4.9
|
85 |
+
scipy==1.9.3
|
86 |
+
seaborn==0.12.1
|
87 |
+
semver==2.13.0
|
88 |
+
six==1.16.0
|
89 |
+
smmap==5.0.0
|
90 |
+
stack-data==0.6.1
|
91 |
+
streamlit==1.15.1
|
92 |
+
streamlit-authenticator==0.1.5
|
93 |
+
streamlit-option-menu==0.3.2
|
94 |
+
tensorboard==2.11.0
|
95 |
+
tensorboard-data-server==0.6.1
|
96 |
+
tensorboard-plugin-wit==1.8.1
|
97 |
+
tensorflow==2.11.0
|
98 |
+
tensorflow-estimator==2.11.0
|
99 |
+
tensorflow-hub==0.12.0
|
100 |
+
tensorflow-io-gcs-filesystem==0.28.0
|
101 |
+
termcolor==2.1.1
|
102 |
+
thop==0.1.1.post2209072238
|
103 |
+
toml==0.10.2
|
104 |
+
toolz==0.12.0
|
105 |
+
torch==1.13.0
|
106 |
+
torchvision==0.14.0
|
107 |
+
tornado==6.2
|
108 |
+
tqdm==4.64.1
|
109 |
+
traitlets==5.5.0
|
110 |
+
typing_extensions==4.4.0
|
111 |
+
tzdata==2022.6
|
112 |
+
tzlocal==4.2
|
113 |
+
urllib3==1.26.12
|
114 |
+
validators==0.20.0
|
115 |
+
watchdog==2.1.9
|
116 |
+
wcwidth==0.2.5
|
117 |
+
Werkzeug==2.2.2
|
118 |
+
wrapt==1.14.1
|
119 |
+
youtube-dl==2020.12.2
|
120 |
+
zipp==3.11.0
|
res10_300x300_ssd_iter_140000.caffemodel
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a56a11a57a4a295956b0660b4a3d76bbdca2206c4961cea8efe7d95c7cb2f2d
|
3 |
+
size 10666211
|
social_distancing.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import datetime
|
3 |
+
import imutils
|
4 |
+
import numpy as np
|
5 |
+
from centroidtracker import CentroidTracker
|
6 |
+
from itertools import combinations
|
7 |
+
import math
|
8 |
+
|
9 |
+
protopath = "MobileNetSSD_deploy.prototxt"
|
10 |
+
modelpath = "MobileNetSSD_deploy.caffemodel"
|
11 |
+
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
|
12 |
+
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
|
13 |
+
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
|
14 |
+
|
15 |
+
|
16 |
+
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
|
17 |
+
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
|
18 |
+
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
|
19 |
+
"sofa", "train", "tvmonitor"]
|
20 |
+
|
21 |
+
tracker = CentroidTracker(maxDisappeared=40, maxDistance=50)
|
22 |
+
|
23 |
+
|
24 |
+
def non_max_suppression_fast(boxes, overlapThresh):
|
25 |
+
try:
|
26 |
+
if len(boxes) == 0:
|
27 |
+
return []
|
28 |
+
|
29 |
+
if boxes.dtype.kind == "i":
|
30 |
+
boxes = boxes.astype("float")
|
31 |
+
|
32 |
+
pick = []
|
33 |
+
|
34 |
+
x1 = boxes[:, 0]
|
35 |
+
y1 = boxes[:, 1]
|
36 |
+
x2 = boxes[:, 2]
|
37 |
+
y2 = boxes[:, 3]
|
38 |
+
|
39 |
+
area = (x2 - x1 + 1) * (y2 - y1 + 1)
|
40 |
+
idxs = np.argsort(y2)
|
41 |
+
|
42 |
+
while len(idxs) > 0:
|
43 |
+
last = len(idxs) - 1
|
44 |
+
i = idxs[last]
|
45 |
+
pick.append(i)
|
46 |
+
|
47 |
+
xx1 = np.maximum(x1[i], x1[idxs[:last]])
|
48 |
+
yy1 = np.maximum(y1[i], y1[idxs[:last]])
|
49 |
+
xx2 = np.minimum(x2[i], x2[idxs[:last]])
|
50 |
+
yy2 = np.minimum(y2[i], y2[idxs[:last]])
|
51 |
+
|
52 |
+
w = np.maximum(0, xx2 - xx1 + 1)
|
53 |
+
h = np.maximum(0, yy2 - yy1 + 1)
|
54 |
+
|
55 |
+
overlap = (w * h) / area[idxs[:last]]
|
56 |
+
|
57 |
+
idxs = np.delete(idxs, np.concatenate(([last],
|
58 |
+
np.where(overlap > overlapThresh)[0])))
|
59 |
+
|
60 |
+
return boxes[pick].astype("int")
|
61 |
+
except Exception as e:
|
62 |
+
print("Exception occurred in non_max_suppression : {}".format(e))
|
63 |
+
|
64 |
+
|
65 |
+
def main():
|
66 |
+
cap = cv2.VideoCapture('testvideo2.mp4')
|
67 |
+
|
68 |
+
fps_start_time = datetime.datetime.now()
|
69 |
+
fps = 0
|
70 |
+
total_frames = 0
|
71 |
+
|
72 |
+
while True:
|
73 |
+
ret, frame = cap.read()
|
74 |
+
frame = imutils.resize(frame, width=600)
|
75 |
+
total_frames = total_frames + 1
|
76 |
+
|
77 |
+
(H, W) = frame.shape[:2]
|
78 |
+
|
79 |
+
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
|
80 |
+
|
81 |
+
detector.setInput(blob)
|
82 |
+
person_detections = detector.forward()
|
83 |
+
rects = []
|
84 |
+
for i in np.arange(0, person_detections.shape[2]):
|
85 |
+
confidence = person_detections[0, 0, i, 2]
|
86 |
+
if confidence > 0.5:
|
87 |
+
idx = int(person_detections[0, 0, i, 1])
|
88 |
+
|
89 |
+
if CLASSES[idx] != "person":
|
90 |
+
continue
|
91 |
+
|
92 |
+
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
|
93 |
+
(startX, startY, endX, endY) = person_box.astype("int")
|
94 |
+
rects.append(person_box)
|
95 |
+
|
96 |
+
boundingboxes = np.array(rects)
|
97 |
+
boundingboxes = boundingboxes.astype(int)
|
98 |
+
rects = non_max_suppression_fast(boundingboxes, 0.3)
|
99 |
+
centroid_dict = dict()
|
100 |
+
objects = tracker.update(rects)
|
101 |
+
for (objectId, bbox) in objects.items():
|
102 |
+
x1, y1, x2, y2 = bbox
|
103 |
+
x1 = int(x1)
|
104 |
+
y1 = int(y1)
|
105 |
+
x2 = int(x2)
|
106 |
+
y2 = int(y2)
|
107 |
+
cX = int((x1 + x2) / 2.0)
|
108 |
+
cY = int((y1 + y2) / 2.0)
|
109 |
+
|
110 |
+
|
111 |
+
centroid_dict[objectId] = (cX, cY, x1, y1, x2, y2)
|
112 |
+
|
113 |
+
# text = "ID: {}".format(objectId)
|
114 |
+
# cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
115 |
+
|
116 |
+
red_zone_list = []
|
117 |
+
for (id1, p1), (id2, p2) in combinations(centroid_dict.items(), 2):
|
118 |
+
dx, dy = p1[0] - p2[0], p1[1] - p2[1]
|
119 |
+
distance = math.sqrt(dx * dx + dy * dy)
|
120 |
+
if distance < 75.0:
|
121 |
+
if id1 not in red_zone_list:
|
122 |
+
red_zone_list.append(id1)
|
123 |
+
if id2 not in red_zone_list:
|
124 |
+
red_zone_list.append(id2)
|
125 |
+
|
126 |
+
for id, box in centroid_dict.items():
|
127 |
+
if id in red_zone_list:
|
128 |
+
cv2.rectangle(frame, (box[2], box[3]), (box[4], box[5]), (0, 0, 255), 2)
|
129 |
+
else:
|
130 |
+
cv2.rectangle(frame, (box[2], box[3]), (box[4], box[5]), (0, 255, 0), 2)
|
131 |
+
|
132 |
+
|
133 |
+
fps_end_time = datetime.datetime.now()
|
134 |
+
time_diff = fps_end_time - fps_start_time
|
135 |
+
if time_diff.seconds == 0:
|
136 |
+
fps = 0.0
|
137 |
+
else:
|
138 |
+
fps = (total_frames / time_diff.seconds)
|
139 |
+
|
140 |
+
fps_text = "FPS: {:.2f}".format(fps)
|
141 |
+
|
142 |
+
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
|
143 |
+
|
144 |
+
cv2.imshow("Application", frame)
|
145 |
+
key = cv2.waitKey(1)
|
146 |
+
if key == ord('q'):
|
147 |
+
break
|
148 |
+
|
149 |
+
cv2.destroyAllWindows()
|
150 |
+
|
151 |
+
|
152 |
+
main()
|
test4.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
student Count,Date,id
|
3 |
+
|
4 |
+
student Count,Date,id
|
test_video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0ba636766524dd0bdfa52a2a62108aafb585acd138cb0e08226d12ae35b64c5
|
3 |
+
size 27534166
|
video/mask.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4dc1d0ed71d79c29eaa4b8503c829fcf7c840cab93756baabf97238f999432e6
|
3 |
+
size 6143986
|
video/test_video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0ba636766524dd0bdfa52a2a62108aafb585acd138cb0e08226d12ae35b64c5
|
3 |
+
size 27534166
|
video/testvideo2.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15153e2c3d7221d693ec634e5288416fdc330427ccea9f4fc520a362977755e8
|
3 |
+
size 5468270
|
yolov5s.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b3b748c1e592ddd8868022e8732fde20025197328490623cc16c6f24d0782ee
|
3 |
+
size 14808437
|