cheating-detection-FYP / person_tracking.py
Ibtehaj10's picture
Upload 49 files
0ba3ad4
raw
history blame
21.6 kB
import cv2
import datetime
import imutils
import numpy as np
from centroidtracker import CentroidTracker
import pandas as pd
import torch
import streamlit as st
import mediapipe as mp
import cv2 as cv
import numpy as np
import tempfile
import time
from PIL import Image
import pandas as pd
import torch
import base64
import streamlit.components.v1 as components
import csv
import pickle
from pathlib import Path
import streamlit_authenticator as stauth
import os
import csv
# x-x-x-x-x-x-x-x-x-x-x-x-x-x LOGIN FORM x-x-x-x-x-x-x-x-x
import streamlit as st
import pandas as pd
import hashlib
import sqlite3
#
import pickle
from pathlib import Path
import streamlit_authenticator as stauth
# print("Done !!!")
data = ["student Count",'Date','Id','Mobile','Watch']
with open('final.csv', 'w') as file:
writer = csv.writer(file)
writer.writerow(data)
l1 = []
l2 = []
if st.button('signup'):
usernames = st.text_input('Username')
pwd = st.text_input('Password')
l1.append(usernames)
l2.append(pwd)
names = ["dmin", "ser"]
if st.button("signupsss"):
username =l1
password =l2
hashed_passwords =stauth.Hasher(password).generate()
file_path = Path(__file__).parent / "hashed_pw.pkl"
with file_path.open("wb") as file:
pickle.dump(hashed_passwords, file)
elif st.button('Logins'):
names = ['dmin', 'ser']
username =l1
file_path = Path(__file__).parent / 'hashed_pw.pkl'
with file_path.open('rb') as file:
hashed_passwords = pickle.load(file)
authenticator = stauth.Authenticate(names,username,hashed_passwords,'Cheating Detection','abcdefg',cookie_expiry_days=180)
name,authentication_status,username= authenticator.login('Login','main')
if authentication_status == False:
st.error('Username/Password is incorrect')
if authentication_status == None:
st.error('Please enter a username and password')
if authentication_status:
date_time = time.strftime("%b %d %Y %-I:%M %p")
date = date_time.split()
dates = date[0:3]
times = date[3:5]
# x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-xAPPLICACTION -x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x
def non_max_suppression_fast(boxes, overlapThresh):
try:
if len(boxes) == 0:
return []
if boxes.dtype.kind == "i":
boxes = boxes.astype("float")
pick = []
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
idxs = np.argsort(y2)
while len(idxs) > 0:
last = len(idxs) - 1
i = idxs[last]
pick.append(i)
xx1 = np.maximum(x1[i], x1[idxs[:last]])
yy1 = np.maximum(y1[i], y1[idxs[:last]])
xx2 = np.minimum(x2[i], x2[idxs[:last]])
yy2 = np.minimum(y2[i], y2[idxs[:last]])
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
overlap = (w * h) / area[idxs[:last]]
idxs = np.delete(idxs, np.concatenate(([last],
np.where(overlap > overlapThresh)[0])))
return boxes[pick].astype("int")
except Exception as e:
print("Exception occurred in non_max_suppression : {}".format(e))
protopath = "MobileNetSSD_deploy.prototxt"
modelpath = "MobileNetSSD_deploy.caffemodel"
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
# Only enable it if you are using OpenVino environment
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
width: 350px
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
width: 350px
margin-left: -350px
}
</style>
""",
unsafe_allow_html=True,
)
hide_streamlit_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
</style>
"""
st.markdown(hide_streamlit_style, unsafe_allow_html=True)
# Resize Images to fit Container
@st.cache()
# Get Image Dimensions
def image_resize(image, width=None, height=None, inter=cv.INTER_AREA):
dim = None
(h,w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = width/float(w)
dim = (int(w*r),height)
else:
r = width/float(w)
dim = width, int(h*r)
# Resize image
resized = cv.resize(image,dim,interpolation=inter)
return resized
# About Page
authenticator.logout('Logout')
app_mode = st.sidebar.selectbox(
'App Mode',
['About','Application']
)
if app_mode == 'About':
st.title('About Product And Team')
st.markdown('''
Imran Bhai Project
''')
st.markdown(
"""
<style>
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
width: 350px
}
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
width: 350px
margin-left: -350px
}
</style>
""",
unsafe_allow_html=True,
)
elif app_mode == 'Application':
st.set_option('deprecation.showfileUploaderEncoding', False)
use_webcam = st.button('Use Webcam')
# record = st.sidebar.checkbox("Record Video")
# if record:
# st.checkbox('Recording', True)
# drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
# st.sidebar.markdown('---')
# ## Add Sidebar and Window style
# st.markdown(
# """
# <style>
# [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
# width: 350px
# }
# [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
# width: 350px
# margin-left: -350px
# }
# </style>
# """,
# unsafe_allow_html=True,
# )
# max_faces = st.sidebar.number_input('Maximum Number of Faces', value=5, min_value=1)
# st.sidebar.markdown('---')
# detection_confidence = st.sidebar.slider('Min Detection Confidence', min_value=0.0,max_value=1.0,value=0.5)
# tracking_confidence = st.sidebar.slider('Min Tracking Confidence', min_value=0.0,max_value=1.0,value=0.5)
# st.sidebar.markdown('---')
## Get Video
stframe = st.empty()
video_file_buffer = st.file_uploader("Upload a Video", type=['mp4', 'mov', 'avi', 'asf', 'm4v'])
temp_file = tempfile.NamedTemporaryFile(delete=False)
if not video_file_buffer:
if use_webcam:
video = cv.VideoCapture(0)
else:
try:
video = cv.VideoCapture(1)
temp_file.name = video
except:
pass
else:
temp_file.write(video_file_buffer.read())
video = cv.VideoCapture(temp_file.name)
width = int(video.get(cv.CAP_PROP_FRAME_WIDTH))
height = int(video.get(cv.CAP_PROP_FRAME_HEIGHT))
fps_input = int(video.get(cv.CAP_PROP_FPS))
## Recording
codec = cv.VideoWriter_fourcc('a','v','c','1')
out = cv.VideoWriter('output1.mp4', codec, fps_input, (width,height))
st.sidebar.text('Input Video')
# st.sidebar.video(temp_file.name)
fps = 0
i = 0
drawing_spec = mp.solutions.drawing_utils.DrawingSpec(thickness=2, circle_radius=1)
kpil, kpil2, kpil3,kpil4,kpil5, kpil6 = st.columns(6)
with kpil:
st.markdown('**Frame Rate**')
kpil_text = st.markdown('0')
with kpil2:
st.markdown('**detection ID**')
kpil2_text = st.markdown('0')
with kpil3:
st.markdown('**Mobile**')
kpil3_text = st.markdown('0')
with kpil4:
st.markdown('**Watch**')
kpil4_text = st.markdown('0')
with kpil5:
st.markdown('**Count**')
kpil5_text = st.markdown('0')
with kpil6:
st.markdown('**Img Res**')
kpil6_text = st.markdown('0')
st.markdown('<hr/>', unsafe_allow_html=True)
# try:
def main():
db = {}
# cap = cv2.VideoCapture('//home//anas//PersonTracking//WebUI//movement.mp4')
path='/usr/local/lib/python3.10/dist-packages/yolo0vs5/yolov5s-int8.tflite'
#count=0
custom = 'yolov5s'
model = torch.hub.load('/usr/local/lib/python3.10/dist-packages/yolovs5', custom, path,source='local',force_reload=True)
b=model.names[0] = 'person'
mobile = model.names[67] = 'cell phone'
watch = model.names[75] = 'clock'
fps_start_time = datetime.datetime.now()
fps = 0
size=416
count=0
counter=0
color=(0,0,255)
cy1=250
offset=6
pt1 = (120, 100)
pt2 = (980, 1150)
color = (0, 255, 0)
pt3 = (283, 103)
pt4 = (1500, 1150)
cy2 = 500
color = (0, 255, 0)
total_frames = 0
prevTime = 0
cur_frame = 0
count=0
counter=0
fps_start_time = datetime.datetime.now()
fps = 0
total_frames = 0
lpc_count = 0
opc_count = 0
object_id_list = []
# success = True
if st.button("Detect"):
try:
while video.isOpened():
ret, frame = video.read()
frame = imutils.resize(frame, width=600)
total_frames = total_frames + 1
(H, W) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)
detector.setInput(blob)
person_detections = detector.forward()
rects = []
for i in np.arange(0, person_detections.shape[2]):
confidence = person_detections[0, 0, i, 2]
if confidence > 0.5:
idx = int(person_detections[0, 0, i, 1])
if CLASSES[idx] != "person":
continue
person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
(startX, startY, endX, endY) = person_box.astype("int")
rects.append(person_box)
boundingboxes = np.array(rects)
boundingboxes = boundingboxes.astype(int)
rects = non_max_suppression_fast(boundingboxes, 0.3)
objects = tracker.update(rects)
for (objectId, bbox) in objects.items():
x1, y1, x2, y2 = bbox
x1 = int(x1)
y1 = int(y1)
x2 = int(x2)
y2 = int(y2)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
text = "ID: {}".format(objectId)
# print(text)
cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
if objectId not in object_id_list:
object_id_list.append(objectId)
fps_end_time = datetime.datetime.now()
time_diff = fps_end_time - fps_start_time
if time_diff.seconds == 0:
fps = 0.0
else:
fps = (total_frames / time_diff.seconds)
fps_text = "FPS: {:.2f}".format(fps)
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
lpc_count = len(objects)
opc_count = len(object_id_list)
lpc_txt = "LPC: {}".format(lpc_count)
opc_txt = "OPC: {}".format(opc_count)
count += 1
if count % 4 != 0:
continue
# frame=cv.resize(frame, (600,500))
# cv2.line(frame, pt1, pt2,color,2)
# cv2.line(frame, pt3, pt4,color,2)
results = model(frame,size)
components = results.pandas().xyxy[0]
for index, row in results.pandas().xyxy[0].iterrows():
x1 = int(row['xmin'])
y1 = int(row['ymin'])
x2 = int(row['xmax'])
y2 = int(row['ymax'])
confidence = (row['confidence'])
obj = (row['class'])
# min':x1,'ymin':y1,'xmax':x2,'ymax':y2,'confidence':confidence,'Object':obj}
# if lpc_txt is not None:
# try:
# db["student Count"] = [lpc_txt]
# except:
# db["student Count"] = ['N/A']
if obj == 0:
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
rectcenter = int(rectx1),int(recty1)
cx = rectcenter[0]
cy = rectcenter[1]
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
cv2.putText(frame,str(b), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
db["student Count"] = [lpc_txt]
db['Date'] = [date_time]
db['id'] = ['N/A']
db['Mobile']=['N/A']
db['Watch'] = ['N/A']
if cy<(cy1+offset) and cy>(cy1-offset):
DB = []
counter+=1
DB.append(counter)
ff = DB[-1]
fx = str(ff)
# cv2.line(frame, pt1, pt2,(0, 0, 255),2)
# if cy<(cy2+offset) and cy>(cy2-offset):
# cv2.line(frame, pt3, pt4,(0, 0, 255),2)
font = cv2.FONT_HERSHEY_TRIPLEX
cv2.putText(frame,fx,(50, 50),font, 1,(0, 0, 255),2,cv2.LINE_4)
cv2.putText(frame,"Movement",(70, 70),font, 1,(0, 0, 255),2,cv2.LINE_4)
kpil2_text.write(f"<h5 style='text-align: left; color:red;'>{text}</h5>", unsafe_allow_html=True)
db['id'] = [text]
if obj == 67:
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
rectcenter = int(rectx1),int(recty1)
cx = rectcenter[0]
cy = rectcenter[1]
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
cv2.putText(frame,str(mobile), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
cv2.putText(frame,'Mobile',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
kpil3_text.write(f"<h5 style='text-align: left; color:red;'>{mobile}{text}</h5>", unsafe_allow_html=True)
db['Mobile']=mobile+' '+text
if obj == 75:
cv2.rectangle(frame,(x1,y1),(x2,y2),(0,0,255),2)
rectx1,recty1 = ((x1+x2)/2,(y1+y2)/2)
rectcenter = int(rectx1),int(recty1)
cx = rectcenter[0]
cy = rectcenter[1]
cv2.circle(frame,(cx,cy),3,(0,255,0),-1)
cv2.putText(frame,str(watch), (x1,y1), cv2.FONT_HERSHEY_PLAIN,2,(255,255,255),2)
cv2.putText(frame,'Watch',(50, 50),cv2.FONT_HERSHEY_PLAIN, 1,(0, 0, 255),2,cv2.LINE_4)
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{watch}</h5>", unsafe_allow_html=True)
db['Watch']=watch
kpil_text.write(f"<h5 style='text-align: left; color:red;'>{int(fps)}</h5>", unsafe_allow_html=True)
kpil5_text.write(f"<h5 style='text-align: left; color:red;'>{lpc_txt}</h5>", unsafe_allow_html=True)
kpil6_text.write(f"<h5 style='text-align: left; color:red;'>{width*height}</h5>",
unsafe_allow_html=True)
frame = cv.resize(frame,(0,0), fx=0.8, fy=0.8)
frame = image_resize(image=frame, width=640)
stframe.image(frame,channels='BGR', use_column_width=True)
df = pd.DataFrame(db)
df.to_csv('final.csv',mode='a',header=False,index=False)
except:
pass
with open('final.csv') as f:
st.download_button(label = 'Download Cheating Report',data=f,file_name='data.csv')
os.remove("final.csv")
main()