cheating-detection-FYP / face_mask_detector.py
Ibtehaj10's picture
Upload 49 files
0ba3ad4
raw
history blame
2.18 kB
from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
from tensorflow.keras.preprocessing.image import img_to_array
from tensorflow.keras.models import load_model
from imutils.video import VideoStream
import numpy as np
import argparse
import imutils
import time
import cv2
import os
import datetime
proto_txt_path = 'deploy.prototxt'
model_path = 'res10_300x300_ssd_iter_140000.caffemodel'
face_detector = cv2.dnn.readNetFromCaffe(proto_txt_path, model_path)
mask_detector = load_model('mask_detector.model')
cap = cv2.VideoCapture('mask.mp4')
while True:
ret, frame = cap.read()
frame = imutils.resize(frame, width=400)
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame, 1.0, (300, 300), (104, 177, 123))
face_detector.setInput(blob)
detections = face_detector.forward()
faces = []
bbox = []
results = []
for i in range(0, detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > 0.5:
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
face = frame[startY:endY, startX:endX]
face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
face = cv2.resize(face, (224, 224))
face = img_to_array(face)
face = preprocess_input(face)
face = np.expand_dims(face, axis=0)
faces.append(face)
bbox.append((startX, startY, endX, endY))
if len(faces) > 0:
results = mask_detector.predict(faces)
for (face_box, result) in zip(bbox, results):
(startX, startY, endX, endY) = face_box
(mask, withoutMask) = result
label = ""
if mask > withoutMask:
label = "Mask"
color = (0, 255, 0)
else:
label = "No Mask"
color = (0, 0, 255)
cv2.putText(frame, label, (startX, startY-10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2)
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break