File size: 4,449 Bytes
0ba3ad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import cv2
import datetime
import imutils
import numpy as np
from centroidtracker import CentroidTracker

protopath = "MobileNetSSD_deploy.prototxt"
modelpath = "MobileNetSSD_deploy.caffemodel"
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)


CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
           "bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
           "dog", "horse", "motorbike", "person", "pottedplant", "sheep",
           "sofa", "train", "tvmonitor"]

tracker = CentroidTracker(maxDisappeared=80, maxDistance=90)


def non_max_suppression_fast(boxes, overlapThresh):
    try:
        if len(boxes) == 0:
            return []

        if boxes.dtype.kind == "i":
            boxes = boxes.astype("float")

        pick = []

        x1 = boxes[:, 0]
        y1 = boxes[:, 1]
        x2 = boxes[:, 2]
        y2 = boxes[:, 3]

        area = (x2 - x1 + 1) * (y2 - y1 + 1)
        idxs = np.argsort(y2)

        while len(idxs) > 0:
            last = len(idxs) - 1
            i = idxs[last]
            pick.append(i)

            xx1 = np.maximum(x1[i], x1[idxs[:last]])
            yy1 = np.maximum(y1[i], y1[idxs[:last]])
            xx2 = np.minimum(x2[i], x2[idxs[:last]])
            yy2 = np.minimum(y2[i], y2[idxs[:last]])

            w = np.maximum(0, xx2 - xx1 + 1)
            h = np.maximum(0, yy2 - yy1 + 1)

            overlap = (w * h) / area[idxs[:last]]

            idxs = np.delete(idxs, np.concatenate(([last],
                                                   np.where(overlap > overlapThresh)[0])))

        return boxes[pick].astype("int")
    except Exception as e:
        print("Exception occurred in non_max_suppression : {}".format(e))


def main():
    cap = cv2.VideoCapture('test_video.mp4')

    fps_start_time = datetime.datetime.now()
    fps = 0
    total_frames = 0
    lpc_count = 0
    opc_count = 0
    object_id_list = []
    while True:
        ret, frame = cap.read()
        frame = imutils.resize(frame, width=600)
        total_frames = total_frames + 1

        (H, W) = frame.shape[:2]

        blob = cv2.dnn.blobFromImage(frame, 0.007843, (W, H), 127.5)

        detector.setInput(blob)
        person_detections = detector.forward()
        rects = []
        for i in np.arange(0, person_detections.shape[2]):
            confidence = person_detections[0, 0, i, 2]
            if confidence > 0.5:
                idx = int(person_detections[0, 0, i, 1])

                if CLASSES[idx] != "person":
                    continue

                person_box = person_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
                (startX, startY, endX, endY) = person_box.astype("int")
                rects.append(person_box)

        boundingboxes = np.array(rects)
        boundingboxes = boundingboxes.astype(int)
        rects = non_max_suppression_fast(boundingboxes, 0.3)

        objects = tracker.update(rects)
        for (objectId, bbox) in objects.items():
            x1, y1, x2, y2 = bbox
            x1 = int(x1)
            y1 = int(y1)
            x2 = int(x2)
            y2 = int(y2)

            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
            text = "ID: {}".format(objectId)
            cv2.putText(frame, text, (x1, y1-5), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)

            if objectId not in object_id_list:
                object_id_list.append(objectId)

        fps_end_time = datetime.datetime.now()
        time_diff = fps_end_time - fps_start_time
        if time_diff.seconds == 0:
            fps = 0.0
        else:
            fps = (total_frames / time_diff.seconds)

        fps_text = "FPS: {:.2f}".format(fps)

        cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)

        lpc_count = len(objects)
        opc_count = len(object_id_list)

        lpc_txt = "LPC: {}".format(lpc_count)
        opc_txt = "OPC: {}".format(opc_count)

        cv2.putText(frame, lpc_txt, (5, 60), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
        cv2.putText(frame, opc_txt, (5, 90), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)

        cv2.imshow("Application", frame)
        key = cv2.waitKey(1)
        if key == ord('q'):
            break

    cv2.destroyAllWindows()


main()