OutfitAnyone / app.py
ali2780's picture
Upload app.py
8da03a8 verified
raw
history blame
15 kB
# import os
# import cv2
# import numpy as np
# import json
# import random
# from PIL import Image, ImageDraw, ImageFont
# import asyncio
# import requests
# import base64
# import gradio as gr
# machine_number = 0
# model = os.path.join(os.path.dirname(__file__), "models/eva/Eva_0.png")
# MODEL_MAP = {
# "AI Model Rouyan_0": 'models/rouyan_new/Rouyan_0.png',
# "AI Model Rouyan_1": 'models/rouyan_new/Rouyan_1.png',
# "AI Model Rouyan_2": 'models/rouyan_new/Rouyan_2.png',
# "AI Model Eva_0": 'models/eva/Eva_0.png',
# "AI Model Eva_1": 'models/eva/Eva_1.png',
# "AI Model Simon_0": 'models/simon_online/Simon_0.png',
# "AI Model Simon_1": 'models/simon_online/Simon_1.png',
# "AI Model Xuanxuan_0": 'models/xiaoxuan_online/Xuanxuan_0.png',
# "AI Model Xuanxuan_1": 'models/xiaoxuan_online/Xuanxuan_1.png',
# "AI Model Xuanxuan_2": 'models/xiaoxuan_online/Xuanxuan_2.png',
# "AI Model Yaqi_0": 'models/yaqi/Yaqi_0.png',
# "AI Model Yaqi_1": 'models/yaqi/Yaqi_1.png',
# "AI Model Yaqi_2": 'models/yaqi/Yaqi_2.png',
# "AI Model Yaqi_3": 'models/yaqi/Yaqi_3.png',
# "AI Model Yifeng_0": 'models/yifeng_online/Yifeng_0.png',
# "AI Model Yifeng_1": 'models/yifeng_online/Yifeng_1.png',
# "AI Model Yifeng_2": 'models/yifeng_online/Yifeng_2.png',
# "AI Model Yifeng_3": 'models/yifeng_online/Yifeng_3.png',
# }
# def add_waterprint(img):
# h, w, _ = img.shape
# img = cv2.putText(img, 'Powered by OutfitAnyone', (int(0.3*w), h-20), cv2.FONT_HERSHEY_PLAIN, 2, (128, 128, 128), 2, cv2.LINE_AA)
# return img
# def get_tryon_result(model_name, garment1, garment2, seed=1234):
# model_name = "AI Model " + model_name.split("/")[-1].split(".")[0] # Linux path handling
# print(model_name)
# # Directly load the model image from the disk, no need for Gradio file upload
# model_image = cv2.imread(MODEL_MAP.get(model_name)) # Load model image from disk
# if model_image is None:
# raise ValueError(f"Model image {model_name} could not be loaded.")
# encoded_garment1 = cv2.imencode('.jpg', garment1)[1].tobytes()
# encoded_garment1 = base64.b64encode(encoded_garment1).decode('utf-8')
# if garment2 is not None:
# encoded_garment2 = cv2.imencode('.jpg', garment2)[1].tobytes()
# encoded_garment2 = base64.b64encode(encoded_garment2).decode('utf-8')
# else:
# encoded_garment2 = ''
# # Get the IP address from environment variable or default to localhost
# url = os.environ.get('OA_IP_ADDRESS', 'http://localhost:5000')
# headers = {'Content-Type': 'application/json'}
# seed = random.randint(0, 1222222222)
# data = {
# "garment1": encoded_garment1,
# "garment2": encoded_garment2,
# "model_name": model_name,
# "seed": seed
# }
# response = requests.post(url, headers=headers, data=json.dumps(data))
# print("response code", response.status_code)
# if response.status_code == 200:
# result = response.json()
# result = base64.b64decode(result['images'][0])
# result_np = np.frombuffer(result, np.uint8)
# result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
# else:
# print('Server error!')
# final_img = add_waterprint(result_img)
# return final_img
# with gr.Blocks(css=".output-image, .input-image, .image-preview {height: 400px !important}") as demo:
# gr.HTML(
# """
# <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
# <div>
# <h1>Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person</h1>
# <h4>v0.9</h4>
# <h5>If you like our project, please give us a star on Github to stay updated with the latest developments.</h5>
# <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
# <a href="https://arxiv.org/abs/2407.16224"><img src="https://img.shields.io/badge/Arxiv-2407.16224-red"></a>
# <a href='https://humanaigc.github.io/outfit-anyone/'><img src='https://img.shields.io/badge/Project_Page-OutfitAnyone-green' alt='Project Page'></a>
# <a href='https://github.com/HumanAIGC/OutfitAnyone'><img src='https://img.shields.io/badge/Github-Repo-blue'></a>
# </div>
# </div>
# </div>
# """
# )
# with gr.Row():
# with gr.Column():
# init_image = gr.Image(sources='upload', type="numpy", label="model", value=None)
# example = gr.Examples(inputs=init_image,
# examples_per_page=4,
# examples=[os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_0'))])
# with gr.Column():
# gr.HTML(
# """
# <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
# <div>
# <h3>Models are fixed and cannot be uploaded or modified; we only support users uploading their own garments.</h3>
# <h4 style="margin: 0;">For a one-piece dress or coat, you only need to upload the image to the 'top garment' section and leave the 'lower garment' section empty.</h4>
# </div>
# </div>
# """
# )
# with gr.Row():
# garment_top = gr.Image(sources='upload', type="numpy", label="top garment")
# example_top = gr.Examples(inputs=garment_top,
# examples_per_page=5,
# examples=[os.path.join(os.path.dirname(__file__), "garments/top222.JPG")])
# garment_down = gr.Image(sources='upload', type="numpy", label="lower garment")
# example_down = gr.Examples(inputs=garment_down,
# examples_per_page=5,
# examples=[os.path.join(os.path.dirname(__file__), "garments/bottom1.png")])
# run_button = gr.Button(value="Run")
# with gr.Column():
# gallery = gr.Image()
# run_button.click(fn=get_tryon_result,
# inputs=[init_image, garment_top, garment_down],
# outputs=[gallery],
# concurrency_limit=2)
# gr.Markdown("## Examples")
# with gr.Row():
# reference_image1 = gr.Image(label="model", scale=1, value="examples/basemodel.png")
# reference_image2 = gr.Image(label="garment", scale=1, value="examples/garment1.jpg")
# reference_image3 = gr.Image(label="result", scale=1, value="examples/result1.png")
# gr.Examples(
# examples=[["examples/basemodel.png", "examples/garment1.png", "examples/result1.png"]],
# inputs=[reference_image1, reference_image2, reference_image3],
# label=None,
# )
# if __name__ == "__main__":
# ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
# print("IP address", ip)
# demo.queue(max_size=10)
# demo.launch()
import os
import cv2
import numpy as np
import json
import random
from PIL import Image, ImageDraw, ImageFont
import asyncio
import requests
import base64
import gradio as gr
# Set the machine number and model path
machine_number = 0
model = os.path.join(os.path.dirname(__file__), "models", "eva", "Eva_0.png")
# Define a mapping of model names to file paths
MODEL_MAP = {
"AI Model Rouyan_0": os.path.join("models", "rouyan_new", "rouyan_new\\Rouyan_0.png"),
"AI Model Rouyan_1": os.path.join("models", "rouyan_new", "rouyan_new\\Rouyan_1.png"),
"AI Model Rouyan_2": os.path.join("models", "rouyan_new", "rouyan_new\\Rouyan_2.png"),
"AI Model Eva_0": os.path.join("models", "eva", "Eva_0.png"),
"AI Model Eva_1": os.path.join("models", "eva", "Eva_1.png"),
"AI Model Simon_0": os.path.join("models", "simon_online", "Simon_0.png"),
"AI Model Simon_1": os.path.join("models", "simon_online", "Simon_1.png"),
"AI Model Xuanxuan_0": os.path.join("models", "xiaoxuan_online", "Xuanxuan_0.png"),
"AI Model Xuanxuan_1": os.path.join("models", "xiaoxuan_online", "Xuanxuan_1.png"),
"AI Model Xuanxuan_2": os.path.join("models", "xiaoxuan_online", "Xuanxuan_2.png"),
"AI Model Yaqi_0": os.path.join("models", "yaqi", "Yaqi_0.png"),
"AI Model Yaqi_1": os.path.join("models", "yaqi", "Yaqi_1.png"),
"AI Model Yaqi_2": os.path.join("models", "yaqi", "Yaqi_2.png"),
"AI Model Yaqi_3": os.path.join("models", "yaqi", "Yaqi_3.png"),
"AI Model Yifeng_0": os.path.join("models", "yifeng_online", "Yifeng_0.png"),
"AI Model Yifeng_1": os.path.join("models", "yifeng_online", "Yifeng_1.png"),
"AI Model Yifeng_2": os.path.join("models", "yifeng_online", "Yifeng_2.png"),
"AI Model Yifeng_3": os.path.join("models", "yifeng_online", "Yifeng_3.png"),
}
# Function to add watermark text to image
def add_waterprint(img):
h, w, _ = img.shape
img = cv2.putText(img, 'Powered by OutfitAnyone', (int(0.3*w), h-20), cv2.FONT_HERSHEY_PLAIN, 2, (128, 128, 128), 2, cv2.LINE_AA)
return img
# Function to process try-on results
def get_tryon_result(model_name, garment1, garment2, seed=1234):
if isinstance(model_name, np.ndarray):
model_name = model_name[0]
model_name = "AI Model " + model_name.split("\\")[-1].split(".")[0] # Handle Windows path
print(type(model_name))
# Directly load the model image from the disk, no need for Gradio file upload
model_image = cv2.imread(MODEL_MAP.get(model_name)) # Load model image from disk
if model_image is None:
raise ValueError(f"Model image {model_name} could not be loaded.")
# Encode garments as base64
encoded_garment1 = cv2.imencode('.jpg', garment1)[1].tobytes()
encoded_garment1 = base64.b64encode(encoded_garment1).decode('utf-8')
if garment2 is not None:
encoded_garment2 = cv2.imencode('.jpg', garment2)[1].tobytes()
encoded_garment2 = base64.b64encode(encoded_garment2).decode('utf-8')
else:
encoded_garment2 = ''
# Get the IP address from environment variable or default to localhost
url = os.environ.get('OA_IP_ADDRESS', 'http://localhost:5000')
headers = {'Content-Type': 'application/json'}
seed = random.randint(0, 1222222222)
# Prepare data for POST request
data = {
"garment1": encoded_garment1,
"garment2": encoded_garment2,
"model_name": model_name,
"seed": seed
}
# Send POST request to server
response = requests.post(url, headers=headers, data=json.dumps(data))
print("response code", response.status_code)
if response.status_code == 200:
result = response.json()
result = base64.b64decode(result['images'][0])
result_np = np.frombuffer(result, np.uint8)
result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
else:
print('Server error!')
final_img = add_waterprint(result_img)
return final_img
with gr.Blocks(css=".output-image, .input-image, .image-preview {height: 400px !important}") as demo:
# Header Section
gr.HTML(
"""
<div style="text-align: center; padding: 20px;">
<h1 style="font-size: 2.5rem; color: #2c3e50;">Outfit Anyone</h1>
<h2 style="color: #34495e;">Ultra-high quality virtual try-on for any clothing and any person</h2>
</div>
"""
)
# UI Layout for Image Inputs and Text Description
with gr.Row():
with gr.Column():
gr.Markdown("### Upload Your Model Image")
init_image = gr.Image(sources='upload', type="numpy", label="Select a Model Image", value=None)
example = gr.Examples(inputs=init_image,
examples_per_page=4,
examples=[os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_0'))])
with gr.Column():
gr.Markdown(
"""
<h3 style="color: #2c3e50;">Instructions</h3>
<p style="font-size: 1.1rem; color: #7f8c8d;">Please upload your model image and garment images (top and bottom).
The models are pre-loaded and cannot be modified.
For a dress or coat, you only need to upload the image for the 'Top Garment' section and leave the 'Bottom Garment' section empty.</p>
"""
)
with gr.Row():
garment_top = gr.Image(sources='upload', type="numpy", label="Top Garment")
example_top = gr.Examples(inputs=garment_top,
examples_per_page=5,
examples=[os.path.join(os.path.dirname(__file__), "garments", "top222.JPG")])
garment_down = gr.Image(sources='upload', type="numpy", label="Bottom Garment")
example_down = gr.Examples(inputs=garment_down,
examples_per_page=5,
examples=[os.path.join(os.path.dirname(__file__), "garments", "bottom1.png")])
run_button = gr.Button(value="Run Try-On")
with gr.Column():
gallery = gr.Image(label="Try-On Result")
run_button.click(fn=get_tryon_result,
inputs=[init_image, garment_top, garment_down],
outputs=[gallery],
concurrency_limit=2)
# Example Section
gr.Markdown("## Example Try-On Results")
with gr.Row():
reference_image1 = gr.Image(label="Model Example", scale=1, value="examples\\examples_basemodel.png")
reference_image2 = gr.Image(label="Garment Example", scale=1, value="examples\\examples_garment1.jpg")
reference_image3 = gr.Image(label="Result Example", scale=1, value="examples\\examples_result1.png")
gr.Examples(
examples=[["examples\\examples_basemodel.png", "examples\\examples_garment1.png", "examples\\examples_result1.png"]],
inputs=[reference_image1, reference_image2, reference_image3],
label="Check out our example outfits!",
)
if __name__ == "__main__":
ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
print("IP address", ip)
demo.queue(max_size=10)
demo.launch()