File size: 14,990 Bytes
8da03a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
# import os
# import cv2
# import numpy as np
# import json
# import random
# from PIL import Image, ImageDraw, ImageFont
# import asyncio

# import requests
# import base64
# import gradio as gr

# machine_number = 0
# model = os.path.join(os.path.dirname(__file__), "models/eva/Eva_0.png")

# MODEL_MAP = {
#     "AI Model Rouyan_0": 'models/rouyan_new/Rouyan_0.png',
#     "AI Model Rouyan_1": 'models/rouyan_new/Rouyan_1.png',
#     "AI Model Rouyan_2": 'models/rouyan_new/Rouyan_2.png',
#     "AI Model Eva_0": 'models/eva/Eva_0.png',
#     "AI Model Eva_1": 'models/eva/Eva_1.png',
#     "AI Model Simon_0": 'models/simon_online/Simon_0.png',
#     "AI Model Simon_1": 'models/simon_online/Simon_1.png',
#     "AI Model Xuanxuan_0": 'models/xiaoxuan_online/Xuanxuan_0.png',
#     "AI Model Xuanxuan_1": 'models/xiaoxuan_online/Xuanxuan_1.png',
#     "AI Model Xuanxuan_2": 'models/xiaoxuan_online/Xuanxuan_2.png',
#     "AI Model Yaqi_0": 'models/yaqi/Yaqi_0.png',
#     "AI Model Yaqi_1": 'models/yaqi/Yaqi_1.png',
#     "AI Model Yaqi_2": 'models/yaqi/Yaqi_2.png',
#     "AI Model Yaqi_3": 'models/yaqi/Yaqi_3.png',
#     "AI Model Yifeng_0": 'models/yifeng_online/Yifeng_0.png',
#     "AI Model Yifeng_1": 'models/yifeng_online/Yifeng_1.png',
#     "AI Model Yifeng_2": 'models/yifeng_online/Yifeng_2.png',
#     "AI Model Yifeng_3": 'models/yifeng_online/Yifeng_3.png',
# }

# def add_waterprint(img):
#     h, w, _ = img.shape
#     img = cv2.putText(img, 'Powered by OutfitAnyone', (int(0.3*w), h-20), cv2.FONT_HERSHEY_PLAIN, 2, (128, 128, 128), 2, cv2.LINE_AA)
#     return img

# def get_tryon_result(model_name, garment1, garment2, seed=1234):
#     model_name = "AI Model " + model_name.split("/")[-1].split(".")[0]  # Linux path handling
#     print(model_name)

#     # Directly load the model image from the disk, no need for Gradio file upload
#     model_image = cv2.imread(MODEL_MAP.get(model_name))  # Load model image from disk
#     if model_image is None:
#         raise ValueError(f"Model image {model_name} could not be loaded.")

#     encoded_garment1 = cv2.imencode('.jpg', garment1)[1].tobytes()
#     encoded_garment1 = base64.b64encode(encoded_garment1).decode('utf-8')

#     if garment2 is not None:
#         encoded_garment2 = cv2.imencode('.jpg', garment2)[1].tobytes()
#         encoded_garment2 = base64.b64encode(encoded_garment2).decode('utf-8')
#     else:
#         encoded_garment2 = ''

#     # Get the IP address from environment variable or default to localhost
#     url = os.environ.get('OA_IP_ADDRESS', 'http://localhost:5000')
#     headers = {'Content-Type': 'application/json'}
#     seed = random.randint(0, 1222222222)
    
#     data = {
#         "garment1": encoded_garment1,
#         "garment2": encoded_garment2,
#         "model_name": model_name,
#         "seed": seed
#     }
    
#     response = requests.post(url, headers=headers, data=json.dumps(data))
#     print("response code", response.status_code)
    
#     if response.status_code == 200:
#         result = response.json()
#         result = base64.b64decode(result['images'][0])
#         result_np = np.frombuffer(result, np.uint8)
#         result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
#     else:
#         print('Server error!')

#     final_img = add_waterprint(result_img)

#     return final_img

# with gr.Blocks(css=".output-image, .input-image, .image-preview {height: 400px !important}") as demo:
#     gr.HTML(
#         """
#         <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
#         <div>
#             <h1>Outfit Anyone: Ultra-high quality virtual try-on for Any Clothing and Any Person</h1>
#             <h4>v0.9</h4>
#             <h5>If you like our project, please give us a star on Github to stay updated with the latest developments.</h5>
#             <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
#                 <a href="https://arxiv.org/abs/2407.16224"><img src="https://img.shields.io/badge/Arxiv-2407.16224-red"></a>
#                 <a href='https://humanaigc.github.io/outfit-anyone/'><img src='https://img.shields.io/badge/Project_Page-OutfitAnyone-green' alt='Project Page'></a>
#                 <a href='https://github.com/HumanAIGC/OutfitAnyone'><img src='https://img.shields.io/badge/Github-Repo-blue'></a>
#             </div>
#         </div>
#         </div>
#         """
#     )
    
#     with gr.Row():
#         with gr.Column():
#             init_image = gr.Image(sources='upload', type="numpy", label="model", value=None)
#             example = gr.Examples(inputs=init_image,
#                                   examples_per_page=4,
#                                   examples=[os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_0'))])
#         with gr.Column():
#             gr.HTML(
#                 """
#                 <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
#                 <div>
#                     <h3>Models are fixed and cannot be uploaded or modified; we only support users uploading their own garments.</h3>
#                     <h4 style="margin: 0;">For a one-piece dress or coat, you only need to upload the image to the 'top garment' section and leave the 'lower garment' section empty.</h4>
#                 </div>
#                 </div>
#                 """
#             )
#             with gr.Row():
#                 garment_top = gr.Image(sources='upload', type="numpy", label="top garment")
#                 example_top = gr.Examples(inputs=garment_top,
#                                           examples_per_page=5,
#                                           examples=[os.path.join(os.path.dirname(__file__), "garments/top222.JPG")])
#                 garment_down = gr.Image(sources='upload', type="numpy", label="lower garment")
#                 example_down = gr.Examples(inputs=garment_down,
#                                            examples_per_page=5,
#                                            examples=[os.path.join(os.path.dirname(__file__), "garments/bottom1.png")])

#             run_button = gr.Button(value="Run")
#         with gr.Column():
#             gallery = gr.Image()

#             run_button.click(fn=get_tryon_result, 
#                              inputs=[init_image, garment_top, garment_down], 
#                              outputs=[gallery], 
#                              concurrency_limit=2)

#     gr.Markdown("## Examples")
#     with gr.Row():
#         reference_image1 = gr.Image(label="model", scale=1, value="examples/basemodel.png")
#         reference_image2 = gr.Image(label="garment", scale=1, value="examples/garment1.jpg")
#         reference_image3 = gr.Image(label="result", scale=1, value="examples/result1.png")
#     gr.Examples(
#         examples=[["examples/basemodel.png", "examples/garment1.png", "examples/result1.png"]],
#         inputs=[reference_image1, reference_image2, reference_image3],
#         label=None,
#     )

# if __name__ == "__main__":
#     ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
#     print("IP address", ip)
#     demo.queue(max_size=10)
#     demo.launch()


import os
import cv2
import numpy as np
import json
import random
from PIL import Image, ImageDraw, ImageFont
import asyncio

import requests
import base64
import gradio as gr

# Set the machine number and model path
machine_number = 0
model = os.path.join(os.path.dirname(__file__), "models", "eva", "Eva_0.png")

# Define a mapping of model names to file paths
MODEL_MAP = {
    "AI Model Rouyan_0": os.path.join("models", "rouyan_new", "rouyan_new\\Rouyan_0.png"),
    "AI Model Rouyan_1": os.path.join("models", "rouyan_new", "rouyan_new\\Rouyan_1.png"),
    "AI Model Rouyan_2": os.path.join("models", "rouyan_new", "rouyan_new\\Rouyan_2.png"),
    "AI Model Eva_0": os.path.join("models", "eva", "Eva_0.png"),
    "AI Model Eva_1": os.path.join("models", "eva", "Eva_1.png"),
    "AI Model Simon_0": os.path.join("models", "simon_online", "Simon_0.png"),
    "AI Model Simon_1": os.path.join("models", "simon_online", "Simon_1.png"),
    "AI Model Xuanxuan_0": os.path.join("models", "xiaoxuan_online", "Xuanxuan_0.png"),
    "AI Model Xuanxuan_1": os.path.join("models", "xiaoxuan_online", "Xuanxuan_1.png"),
    "AI Model Xuanxuan_2": os.path.join("models", "xiaoxuan_online", "Xuanxuan_2.png"),
    "AI Model Yaqi_0": os.path.join("models", "yaqi", "Yaqi_0.png"),
    "AI Model Yaqi_1": os.path.join("models", "yaqi", "Yaqi_1.png"),
    "AI Model Yaqi_2": os.path.join("models", "yaqi", "Yaqi_2.png"),
    "AI Model Yaqi_3": os.path.join("models", "yaqi", "Yaqi_3.png"),
    "AI Model Yifeng_0": os.path.join("models", "yifeng_online", "Yifeng_0.png"),
    "AI Model Yifeng_1": os.path.join("models", "yifeng_online", "Yifeng_1.png"),
    "AI Model Yifeng_2": os.path.join("models", "yifeng_online", "Yifeng_2.png"),
    "AI Model Yifeng_3": os.path.join("models", "yifeng_online", "Yifeng_3.png"),
}

# Function to add watermark text to image
def add_waterprint(img):
    h, w, _ = img.shape
    img = cv2.putText(img, 'Powered by OutfitAnyone', (int(0.3*w), h-20), cv2.FONT_HERSHEY_PLAIN, 2, (128, 128, 128), 2, cv2.LINE_AA)
    return img

# Function to process try-on results
def get_tryon_result(model_name, garment1, garment2, seed=1234):
    if isinstance(model_name, np.ndarray):
       model_name = model_name[0] 
    
    model_name = "AI Model " + model_name.split("\\")[-1].split(".")[0]  # Handle Windows path
    print(type(model_name))


    # Directly load the model image from the disk, no need for Gradio file upload
    model_image = cv2.imread(MODEL_MAP.get(model_name))  # Load model image from disk
    if model_image is None:
        raise ValueError(f"Model image {model_name} could not be loaded.")

    # Encode garments as base64
    encoded_garment1 = cv2.imencode('.jpg', garment1)[1].tobytes()
    encoded_garment1 = base64.b64encode(encoded_garment1).decode('utf-8')

    if garment2 is not None:
        encoded_garment2 = cv2.imencode('.jpg', garment2)[1].tobytes()
        encoded_garment2 = base64.b64encode(encoded_garment2).decode('utf-8')
    else:
        encoded_garment2 = ''

    # Get the IP address from environment variable or default to localhost
    url = os.environ.get('OA_IP_ADDRESS', 'http://localhost:5000')
    headers = {'Content-Type': 'application/json'}
    seed = random.randint(0, 1222222222)

    # Prepare data for POST request
    data = {
        "garment1": encoded_garment1,
        "garment2": encoded_garment2,
        "model_name": model_name,
        "seed": seed
    }

    # Send POST request to server
    response = requests.post(url, headers=headers, data=json.dumps(data))
    print("response code", response.status_code)

    if response.status_code == 200:
        result = response.json()
        result = base64.b64decode(result['images'][0])
        result_np = np.frombuffer(result, np.uint8)
        result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
    else:
        print('Server error!')

    final_img = add_waterprint(result_img)

    return final_img


with gr.Blocks(css=".output-image, .input-image, .image-preview {height: 400px !important}") as demo:
    
    # Header Section
    gr.HTML(
        """

        <div style="text-align: center; padding: 20px;">

            <h1 style="font-size: 2.5rem; color: #2c3e50;">Outfit Anyone</h1>

            <h2 style="color: #34495e;">Ultra-high quality virtual try-on for any clothing and any person</h2>

        </div>

        """
    )

    # UI Layout for Image Inputs and Text Description
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Upload Your Model Image")
            init_image = gr.Image(sources='upload', type="numpy", label="Select a Model Image", value=None)
            example = gr.Examples(inputs=init_image,
                                  examples_per_page=4,
                                  examples=[os.path.join(os.path.dirname(__file__), MODEL_MAP.get('AI Model Rouyan_0'))])
        
        with gr.Column():
            gr.Markdown(
                """

                <h3 style="color: #2c3e50;">Instructions</h3>

                <p style="font-size: 1.1rem; color: #7f8c8d;">Please upload your model image and garment images (top and bottom). 

                The models are pre-loaded and cannot be modified. 

                For a dress or coat, you only need to upload the image for the 'Top Garment' section and leave the 'Bottom Garment' section empty.</p>

                """
            )
            with gr.Row():
                garment_top = gr.Image(sources='upload', type="numpy", label="Top Garment")
                example_top = gr.Examples(inputs=garment_top,
                                          examples_per_page=5,
                                          examples=[os.path.join(os.path.dirname(__file__), "garments", "top222.JPG")])
                
                garment_down = gr.Image(sources='upload', type="numpy", label="Bottom Garment")
                example_down = gr.Examples(inputs=garment_down,
                                           examples_per_page=5,
                                           examples=[os.path.join(os.path.dirname(__file__), "garments", "bottom1.png")])

            run_button = gr.Button(value="Run Try-On")
        
        with gr.Column():
            gallery = gr.Image(label="Try-On Result")

            run_button.click(fn=get_tryon_result, 
                             inputs=[init_image, garment_top, garment_down], 
                             outputs=[gallery], 
                             concurrency_limit=2)

    # Example Section
    gr.Markdown("## Example Try-On Results")
    with gr.Row():
        reference_image1 = gr.Image(label="Model Example", scale=1, value="examples\\examples_basemodel.png")
        reference_image2 = gr.Image(label="Garment Example", scale=1, value="examples\\examples_garment1.jpg")
        reference_image3 = gr.Image(label="Result Example", scale=1, value="examples\\examples_result1.png")

    gr.Examples(
        examples=[["examples\\examples_basemodel.png", "examples\\examples_garment1.png", "examples\\examples_result1.png"]],
        inputs=[reference_image1, reference_image2, reference_image3],
        label="Check out our example outfits!",
    )

if __name__ == "__main__":
    ip = requests.get('http://ifconfig.me/ip', timeout=1).text.strip()
    print("IP address", ip)
    demo.queue(max_size=10)
    demo.launch()