Spaces:
Running
Running
import ast | |
from collections import defaultdict | |
from functools import partial | |
import itertools | |
import os | |
import re | |
from concurrent.futures import ThreadPoolExecutor | |
import numpy as np | |
from datetime import datetime | |
from typing import Any | |
import gradio as gr | |
import pandas as pd | |
from datatrove.io import DataFolder | |
FALLBACK_TOKEN_NAME = "HF_TOKEN" | |
def is_arary_like(x): | |
return isinstance(x, list) or isinstance(x, tuple) or isinstance(x, np.ndarray) | |
def get_task_type(df): | |
# Compatibility with old lighteval | |
# [[Pour calculer le bénéfice net de C]] in new lighteval, "Pour calculer le bénéfice net de C" in old lighteval | |
if all(isinstance(pred, str) or (is_arary_like(pred) and all(isinstance(item, str) for item in pred)) for pred in df['predictions'].iloc[0]): | |
return "generative" | |
# [["1", "2"], ["3", "4"]] in new lighteval, ["1", "2"] in old lighteval | |
if all(is_arary_like(pred) and all(isinstance(item, float) for item in pred) for pred in df['predictions'].iloc[0]): | |
return "multiple_choice" | |
return "mixed" | |
def fix_df(df): | |
# For some reason some metrics and predictions are stored as strings | |
for col in ["predictions", "metrics", "choices", "gold", "gold_index"]: | |
if col in df.columns: | |
df[col] = [ast.literal_eval(x) if isinstance(x, str) else x for x in df[col].values] | |
if col == "predictions": | |
# For multiple choice | |
df[col] = df[col].apply(lambda x: [[z[0] for z in x]] if is_arary_like(x) and len(x[0]) == 2 else x) | |
# For unwraping of generative | |
df[col] = df[col].apply(lambda x: x[0] if is_arary_like(x) and len(x) == 1 else x) | |
return df | |
def get_run_name_seed(run_name): | |
if "-seed-" not in run_name: | |
return run_name, 5 | |
run_name, seed = run_name.split("-seed-") | |
return run_name, int(seed) | |
def fetch_repo_structure(results_uri, split_checkpoints=False, oauth_token: gr.OAuthToken | None = None): | |
token = os.environ.get(FALLBACK_TOKEN_NAME) | |
if oauth_token: | |
token = oauth_token.token | |
data_folder = DataFolder(results_uri, token=token) | |
try: | |
runs = [f.removeprefix("details/") for f in data_folder.list_files("details", recursive=False, include_directories=True) if f != "details"] | |
except Exception as e: | |
print(f"Error fetching repo structure: {e}") | |
runs = [] | |
if not runs: | |
return {}, gr.update(choices=[], value=None) | |
def process_run(run): | |
run_files = [f.removeprefix(f"details/{run}/") for f in data_folder.list_files(f"details/{run}", recursive=False, include_directories=True) if f != f"details/{run}"] | |
return run, run_files | |
with ThreadPoolExecutor() as executor: | |
results = list(executor.map(process_run, runs)) | |
checkpoints_dict = dict(results) | |
runs = list(checkpoints_dict.keys()) | |
if not split_checkpoints: | |
runs = [f"{run}/{checkpoint}" for run, checkpoints in checkpoints_dict.items() for checkpoint in checkpoints] | |
return checkpoints_dict, gr.update(choices=runs, value=[]) | |
def update_checkpoints(selected_runs, checkpoints, split_checkpoints): | |
if not selected_runs or not split_checkpoints: | |
return gr.update(choices=[], value=[]) | |
common_checkpoints = set(checkpoints[selected_runs[0]]) | |
for run in selected_runs[1:]: | |
common_checkpoints.intersection_update(set(checkpoints[run])) | |
common_checkpoints = sorted(list(common_checkpoints)) | |
return gr.update(choices=common_checkpoints, value=[common_checkpoints[0]] if common_checkpoints else []) | |
def select_runs_by_regex(runs, current_selected, regex_to_select): | |
comp_re = re.compile(regex_to_select) | |
return list(sorted(set((current_selected if current_selected else []) + | |
[run for run in runs if comp_re.fullmatch(run)]))) | |
def select_runs_by_language(runs, current_selected, language): | |
if language: | |
return select_runs_by_regex(runs, current_selected, f".*-{language}-.*") | |
return current_selected | |
def fetch_available_tasks(results_uri, selected_run_checkpoint: list[str]) -> dict[str, dict[str, str]]: | |
token = os.environ.get(FALLBACK_TOKEN_NAME) | |
data_folder = DataFolder(results_uri, token=token) | |
all_tasks = defaultdict(lambda: defaultdict(dict)) | |
for run_checkpoint in selected_run_checkpoint: | |
try: | |
details_folder = f"details/{run_checkpoint}" | |
files = data_folder.list_files(details_folder, recursive=True) | |
result_files = [f.removeprefix(details_folder + "/") for f in files if f.endswith('.parquet') or f.endswith('.json')] | |
for full_filename in result_files: | |
file_ext = '.parquet' if full_filename.endswith('.parquet') else '.json' | |
# new lighteval has uses date/task_name_date, old lighteval uses task_name_date | |
filename = full_filename.replace(file_ext, '').split("/")[-1] | |
task_name, date_str = filename.rsplit('_', 1) | |
date = datetime.strptime(date_str, '%Y-%m-%dT%H-%M-%S.%f') | |
if run_checkpoint not in all_tasks[task_name] or date > all_tasks[task_name][run_checkpoint]['date']: | |
all_tasks[task_name][run_checkpoint] = {'filename': full_filename, 'date': date} | |
except FileNotFoundError: | |
print(f"Checkpoint not found for run: {run_checkpoint}") | |
# Get tasks that have data for all selected runs | |
available_tasks = { | |
task: {run_checkpoint: info['filename'] for run_checkpoint, info in runs_info.items()} | |
for task, runs_info in all_tasks.items() | |
if set(runs_info.keys()) == set(selected_run_checkpoint) | |
} | |
return available_tasks | |
def fetch_run_results(results_uri, selected_run_checkpoint: list[str], | |
oauth_token: gr.OAuthToken | None = None, progress=gr.Progress()): | |
task_runs_dict = fetch_available_tasks(results_uri, selected_run_checkpoint) | |
task_names = list(task_runs_dict.keys()) | |
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict | |
def render_table(df: pd.DataFrame | None, selected_run_checkpoint: list[str], | |
metric_names: list[str], filter_different: bool = False, | |
n_samples: int = 100): | |
if df is None or not selected_run_checkpoint or not metric_names: | |
return None, "0" | |
kept_metrics = [f"metric_{metric_name}_{run_checkpoint}" | |
for run_checkpoint in selected_run_checkpoint | |
for metric_name in metric_names] | |
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics] | |
df = df.drop(columns=other_metrics) | |
if filter_different: | |
df = df[df.apply(lambda row: has_different_values(row, selected_run_checkpoint, metric_names), axis=1)] | |
df = shorten_column_names(df, selected_run_checkpoint, metric_names) | |
# Get total number of samples before limiting | |
total_samples = len(df) | |
# Take first n_samples instead of random sampling | |
df = df.head(n_samples) | |
# Get column widths for better display | |
column_widths = get_column_widths(df) | |
return gr.Dataframe( | |
value=df, | |
column_widths=column_widths | |
), str(total_samples) | |
def update_selected_run_checkpoint(selected_runs: list[str] | None, selected_checkpoint: list[str] | None, split_checkpoints: bool): | |
if not selected_runs: | |
return [] | |
# In this case we simply return the selected runs which already contain checkpoints | |
if not split_checkpoints: | |
return selected_runs | |
# Otherwise combine runs with checkpoints | |
return [f"{run}/{checkpoint}" for run in selected_runs for checkpoint in (selected_checkpoint if selected_checkpoint else [])] | |
def get_column_widths(df): | |
column_widths = [] | |
for col in df.columns: | |
if col == "prompt": | |
column_widths.append("300px") # Fixed width with overflow | |
elif col.startswith("generation_"): | |
column_widths.append("200px") | |
elif col in ["choices", "gold"]: | |
column_widths.append("100px") | |
else: | |
# Metrics | |
column_widths.append("50px") # Default width for other columns | |
return column_widths | |
def shorten_column_names(df, run_names: list[str], metric_names: list[str]): | |
""" | |
Turns metric columns (metric_{metric}_{run_name}) into {metric}_i | |
Turns generation_{run_name} into generation_i | |
Also truncates full_prompt and generation columns to 100 chars with expandable view | |
""" | |
# Handle metric columns | |
columns_to_rename = {} | |
for idx, run_name in enumerate(run_names): | |
for metric_name in metric_names: | |
original_metric_column = f"metric_{metric_name}_{run_name}" | |
if original_metric_column in df.columns: | |
columns_to_rename[original_metric_column] = f"{metric_name}_{idx}" | |
original_generation_column = f"generation_{run_name}" | |
if original_generation_column in df.columns: | |
columns_to_rename[original_generation_column] = f"generation_{idx}" | |
# Rename columns in a single operation | |
df = df.rename(columns=columns_to_rename) | |
# Add markdown formatting to prompt and generation columns for truncation with expansion | |
def truncate_with_details(text: str | list[str]): | |
if is_arary_like(text) and all(isinstance(item, str) for item in text): | |
return [truncate_with_details(item) for item in text] | |
elif isinstance(text, str): | |
text = text.replace('\n', ' ').strip() # Replace newlines with spaces | |
if len(text) <= 100: | |
return text | |
return f"""<details><summary>{text[:100]}...</summary>\n\n{text[100:]}</details>""" | |
return text | |
if 'prompt' in df.columns: | |
df['prompt'] = df['prompt'].apply(truncate_with_details) | |
# Apply the same truncation to all generation columns | |
generation_columns = [col for col in df.columns if col.startswith('generation_')] | |
for col in generation_columns: | |
df[col] = df[col].apply(truncate_with_details) | |
return df | |
def unwrap_selected_run_checkpoint(selected_run_checkpoint: list[str]) -> list[str]: | |
return selected_run_checkpoint # Now just returns the list directly | |
def load_task_data(results_uri, selected_run_checkpoint: list[str], task_name, tasks_files, prompt_column, progress=gr.Progress()): | |
token = os.environ.get(FALLBACK_TOKEN_NAME) | |
if not selected_run_checkpoint or not task_name: | |
return None, None | |
data_folder = DataFolder(f"filecache::{results_uri}", token=token, cache_storage="./results-cache") | |
def fetch_run_file(run_checkpoint): | |
file_path = f"details/{run_checkpoint}/{tasks_files[task_name][run_checkpoint]}" | |
try: | |
with data_folder.open(file_path, "rb") as f: | |
if file_path.endswith('.parquet'): | |
df = pd.read_parquet(f) | |
else: | |
df = pd.read_json(f, lines=True) | |
return df, run_checkpoint | |
except FileNotFoundError: | |
print(f"File not found: {tasks_files[task_name][run_checkpoint]}") | |
return None, run_checkpoint | |
with ThreadPoolExecutor() as pool: | |
results = list(progress.tqdm(pool.map(fetch_run_file, selected_run_checkpoint), | |
total=len(selected_run_checkpoint), | |
desc="Fetching run data...")) | |
dfs = [fix_df(df) for df, _ in results if df is not None] | |
run_names = [run for _, run in results if run is not None] | |
if not dfs: | |
return None, None, gr.update(choices=[], value=None) | |
task_type = get_task_type(dfs[0]) | |
def prepare_df(df, run_name, task_type, prompt_column): | |
# Mixed in lighteval-old will look like this: ['광', -13.964999198913574, -13.539217948913574, -13.964999198913574, -13.539217948913574, -12.90467357635498, -13.07825756072998] | |
# Generative in lighteval-old will look like this "prediction" | |
# Multiple choice in lighteval-old will look like this ["choice1", "choice2"] | |
# [np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-132.9295196533203), np.float64(-207.1309356689453), np.float64(-186.64553833007812), np.float64(-230.01414489746094), np.float64(-128.63824462890625), np.float64(-203.9550018310547), np.float64(-185.35267639160156), np.float64(-228.23837280273438)] | |
# For the new lighteval we have: | |
# Generative: [[Pour calculer le bénéfice net de C]] | |
def get_choice_predictions(df, task_type): | |
predictions = df['predictions'] | |
if task_type == "generative": | |
# This is strange representation in new lighteval... | |
if is_arary_like(predictions) and all(is_arary_like(item) for item in predictions): | |
return predictions[0] | |
return predictions | |
if task_type == "multiple_choice": | |
n_choices = len(df['choices']) | |
return [pred[0] for pred in predictions[:n_choices]] | |
if task_type == "mixed": | |
return predictions[0] | |
return predictions | |
generative_columns = { | |
f"generation_{run_name}": df.apply(partial(get_choice_predictions, task_type=task_type), axis=1) | |
} if task_type == "generative" or task_type == "mixed" else {} | |
prepared_df = pd.DataFrame({ | |
'prompt': df[prompt_column], | |
'choices': df['choices'].apply(tuple), # Convert lists to tuples | |
'gold': df['gold'].apply(lambda x: tuple(x) if is_arary_like(x) else x), # Convert lists to tuples | |
'gold_index': df['gold_index'], | |
**generative_columns, | |
}) | |
# For some reason some metrics are stored as strings | |
metrics = df['metrics'] | |
available_metrics = set(metric for row_metrics in metrics for metric in row_metrics) | |
for metric_key in available_metrics: | |
prepared_df[f'metric_{metric_key}_{run_name}'] = [metric.get(metric_key, None) for metric in metrics] | |
# Merge rows with the same full_prompt | |
prepared_df = prepared_df.groupby('prompt').agg(lambda x: next((item for item in x if item is not None), None)).reset_index() | |
prepared_df["prompt"] = prepared_df["prompt"].astype(str) | |
return prepared_df | |
def get_gold_label(df, task_type): | |
if task_type == "generative": | |
return df['gold'] | |
return df['gold_index'] | |
# Prepare the first DataFrame with choices and gold | |
# Join all prepared DataFrames | |
prepared_dfs = [ | |
prepare_df(df, run_name, task_type, prompt_column) | |
for df, run_name in zip(dfs, run_names) | |
] | |
combined_df = prepared_dfs[0] | |
for idx, prepared_df in enumerate(prepared_dfs[1:]): | |
combined_df = combined_df.merge(prepared_df, how='outer', on=("prompt", "gold"), suffixes=(None, f"_{idx}")) | |
to_keep = ["prompt", "gold"] | |
if task_type in ["multiple_choice", "mixed"]: | |
to_keep.append("choices") | |
elif task_type == "generative": | |
to_keep.extend([col for col in combined_df.columns if col.startswith("generation_")]) | |
combined_df['gold'] = combined_df.apply(lambda row: get_gold_label(row, task_type), axis=1).values | |
metric_cols = [col for col in combined_df.columns if col.startswith("metric_")] | |
combined_df = combined_df[to_keep + metric_cols] | |
available_metrics = list(set("_".join(col.split('_')[1:-1]) for col in metric_cols)) | |
chosen_metrics = available_metrics[:1] | |
return combined_df, gr.update(choices=available_metrics, value=chosen_metrics) | |
def has_different_values(row: pd.Series, selected_run_checkpoint: list[str], metric_names: list[str]) -> bool: | |
"""Check if a row has different values across runs for any metric or generation.""" | |
# Check generations | |
generation_cols = [f"generation_{run}" for run in selected_run_checkpoint] | |
generation_cols = [col for col in generation_cols if col in row.index] | |
if generation_cols: | |
generations = row[generation_cols].dropna() | |
# Convert lists to tuples for comparison and handle string values | |
unique_generations = set() | |
for gen in generations: | |
if isinstance(gen, list): | |
unique_generations.add(tuple(gen)) | |
else: | |
unique_generations.add(gen) | |
if len(unique_generations) > 1: | |
return True | |
# Check metrics | |
for metric in metric_names: | |
metric_cols = [f"metric_{metric}_{run}" for run in selected_run_checkpoint] | |
metric_cols = [col for col in metric_cols if col in row.index] | |
if metric_cols: | |
metrics = row[metric_cols].dropna() | |
if len(metrics.unique()) > 1: | |
return True | |
return False | |
with gr.Blocks() as demo: | |
available_runs_checkpoints = gr.State({}) | |
results_df_full = gr.State(None) | |
tasks_files = gr.State({}) | |
selected_run_checkpoint = gr.State([]) | |
login_button = gr.LoginButton(visible=False) | |
results_uri = gr.Textbox(label="Fsspec results URI", value="s3://fineweb-v1/evals/test/", visible=True, placeholder="s3://bucket/path/to/results") | |
with gr.Column(): | |
gr.Markdown("# FineWeb experiments results explorer") | |
split_checkpoints = gr.Checkbox(label="Split checkpoints from models", value=True) | |
with gr.Row(): | |
with gr.Column(): | |
select_by_regex_text = gr.Textbox(label="Regex to select runs", | |
value="ind_minhash(-CC-MAIN-|_)\\d{4}-\\d{2}-seed.*") | |
select_by_regex_button = gr.Button("Select matching runs") | |
with gr.Column(): | |
select_by_language = gr.Dropdown(choices=["ar", "fr", "ru", "hi", "th", "tr", "zh", "sw", "te"], | |
interactive=True, label="Select by language", | |
info="Choose a language to prefill the regex") | |
with gr.Row() as run_selection_row: | |
selected_runs = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Selected runs") | |
checkpoint = gr.Dropdown(choices=[], interactive=True, label="Checkpoint", multiselect=True) | |
fetch_res = gr.Button("Fetch results") | |
task_name = gr.Dropdown(choices=[], interactive=True, label="Task name") | |
metric_names = gr.Dropdown(choices=[], interactive=True, multiselect=True, label="Metric") | |
results_df = gr.Dataframe( | |
interactive=False, | |
wrap=True, | |
line_breaks=True, | |
datatype="markdown", | |
column_widths=get_column_widths(pd.DataFrame()) # Initialize with empty dataframe | |
) | |
with gr.Row(): | |
with gr.Column(): | |
num_samples = gr.Text(interactive=False, label="# Samples") | |
prompt_column = gr.Radio(choices=["full_prompt", "example"], label="Prompt display", value="example") | |
filter_different = gr.Checkbox(label="Show only samples with differences", value=False) | |
n_samples_input = gr.Number(value=100, label="Number of samples to show", minimum=1, maximum=1000, step=1) | |
# Run selection | |
gr.on( | |
triggers=[split_checkpoints.change], | |
fn=lambda split_checkpoints: gr.update(visible=split_checkpoints), | |
inputs=[split_checkpoints], | |
outputs=[checkpoint] | |
) | |
gr.on( | |
triggers=[results_uri.change, split_checkpoints.change], | |
fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs], | |
) | |
gr.on( | |
triggers=[select_by_regex_button.click], | |
fn=select_runs_by_regex, | |
inputs=[available_runs_checkpoints, selected_runs, select_by_regex_text], outputs=[selected_runs] | |
) | |
gr.on( | |
triggers=[select_by_language.change], | |
fn=select_runs_by_language, | |
inputs=[available_runs_checkpoints, selected_runs, select_by_language], outputs=[selected_runs] | |
) | |
# Update checkpoints based on selected runs | |
gr.on( | |
triggers=[selected_runs.change], | |
fn=update_checkpoints, | |
inputs=[selected_runs, available_runs_checkpoints, split_checkpoints], | |
outputs=[checkpoint] | |
) | |
gr.on( | |
triggers=[checkpoint.change, selected_runs.change], | |
fn=update_selected_run_checkpoint, | |
inputs=[selected_runs, checkpoint, split_checkpoints], | |
outputs=[selected_run_checkpoint] | |
) | |
# Fetch available tasks | |
gr.on( | |
triggers=[fetch_res.click], | |
fn=fetch_run_results, | |
inputs=[results_uri, selected_run_checkpoint], | |
outputs=[task_name, tasks_files] | |
).then( | |
fn=load_task_data, | |
inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column], | |
outputs=[results_df_full, metric_names] | |
).then( | |
fn=render_table, | |
inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input], | |
outputs=[results_df, num_samples] | |
) | |
# Update results when task name or metric changes | |
gr.on( | |
triggers=[task_name.input, prompt_column.input], | |
fn=load_task_data, | |
inputs=[results_uri, selected_run_checkpoint, task_name, tasks_files, prompt_column], | |
outputs=[results_df_full, metric_names] | |
).then( | |
fn=render_table, | |
inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input], | |
outputs=[results_df, num_samples] | |
) | |
gr.on( | |
triggers=[metric_names.input, filter_different.change, n_samples_input.change], | |
fn=render_table, | |
inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input], | |
outputs=[results_df, num_samples] | |
) | |
demo.load(fn=fetch_repo_structure, inputs=[results_uri, split_checkpoints], outputs=[available_runs_checkpoints, selected_runs]) | |
demo.launch() |