Spaces:
Running
on
T4
Running
on
T4
HikariDawn
commited on
Commit
·
d26bbd5
1
Parent(s):
8f3d49d
feat: auto downsample if it is oversize
Browse files- .gitignore +2 -0
- __assets__/lr_inputs/naruto.jpg +0 -0
- app.py +5 -1
- test_code/inference.py +12 -9
.gitignore
CHANGED
@@ -23,6 +23,8 @@ tmp/*
|
|
23 |
*.zip
|
24 |
*.mp4
|
25 |
*.csv
|
|
|
|
|
26 |
|
27 |
!__assets__/lr_inputs/*
|
28 |
!__assets__/*
|
|
|
23 |
*.zip
|
24 |
*.mp4
|
25 |
*.csv
|
26 |
+
*.jpeg
|
27 |
+
*.webp
|
28 |
|
29 |
!__assets__/lr_inputs/*
|
30 |
!__assets__/*
|
__assets__/lr_inputs/naruto.jpg
ADDED
app.py
CHANGED
@@ -54,11 +54,12 @@ def inference(img_path, model_name):
|
|
54 |
|
55 |
|
56 |
# In default, we will automatically use crop to match 4x size
|
57 |
-
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, crop_for_4x=True)
|
58 |
store_name = str(time.time()) + ".png"
|
59 |
save_image(super_resolved_img, store_name)
|
60 |
outputs = cv2.imread(store_name)
|
61 |
outputs = cv2.cvtColor(outputs, cv2.COLOR_RGB2BGR)
|
|
|
62 |
|
63 |
return outputs
|
64 |
|
@@ -78,6 +79,8 @@ if __name__ == '__main__':
|
|
78 |
|
79 |
APISR aims at restoring and enhancing low-quality low-resolution anime images and video sources with various degradations from real-world scenarios.
|
80 |
|
|
|
|
|
81 |
If APISR is helpful, please help star the GitHub Repo. Thanks!
|
82 |
"""
|
83 |
|
@@ -112,6 +115,7 @@ if __name__ == '__main__':
|
|
112 |
["__assets__/lr_inputs/image-00440.png"],
|
113 |
["__assets__/lr_inputs/image-00164.jpg"],
|
114 |
["__assets__/lr_inputs/img_eva.jpeg"],
|
|
|
115 |
],
|
116 |
[input_image],
|
117 |
)
|
|
|
54 |
|
55 |
|
56 |
# In default, we will automatically use crop to match 4x size
|
57 |
+
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, downsample_threshold=720, crop_for_4x=True)
|
58 |
store_name = str(time.time()) + ".png"
|
59 |
save_image(super_resolved_img, store_name)
|
60 |
outputs = cv2.imread(store_name)
|
61 |
outputs = cv2.cvtColor(outputs, cv2.COLOR_RGB2BGR)
|
62 |
+
os.remove(store_name)
|
63 |
|
64 |
return outputs
|
65 |
|
|
|
79 |
|
80 |
APISR aims at restoring and enhancing low-quality low-resolution anime images and video sources with various degradations from real-world scenarios.
|
81 |
|
82 |
+
### Note: Due to memory restriction, all images whose short side is over 720 pixel will be downsampled to 720 pixel with the same aspect ratio. E.g., 1920x1080 -> 1280x720
|
83 |
+
|
84 |
If APISR is helpful, please help star the GitHub Repo. Thanks!
|
85 |
"""
|
86 |
|
|
|
115 |
["__assets__/lr_inputs/image-00440.png"],
|
116 |
["__assets__/lr_inputs/image-00164.jpg"],
|
117 |
["__assets__/lr_inputs/img_eva.jpeg"],
|
118 |
+
["__assets__/lr_inputs/naruto.jpg"],
|
119 |
],
|
120 |
[input_image],
|
121 |
)
|
test_code/inference.py
CHANGED
@@ -19,19 +19,30 @@ from test_code.test_utils import load_grl, load_rrdb, load_cunet
|
|
19 |
|
20 |
|
21 |
@torch.no_grad # You must add these time, else it will have Out of Memory
|
22 |
-
def super_resolve_img(generator, input_path, output_path=None, weight_dtype=torch.float32, crop_for_4x=True):
|
23 |
''' Super Resolve a low resolution image
|
24 |
Args:
|
25 |
generator (torch): the generator class that is already loaded
|
26 |
input_path (str): the path to the input lr images
|
27 |
output_path (str): the directory to store the generated images
|
28 |
weight_dtype (bool): the weight type (float32/float16)
|
|
|
29 |
crop_for_4x (bool): whether we crop the lr images to match 4x scale (needed for some situation)
|
30 |
'''
|
31 |
print("Processing image {}".format(input_path))
|
32 |
|
33 |
# Read the image and do preprocess
|
34 |
img_lr = cv2.imread(input_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
# Crop if needed
|
36 |
if crop_for_4x:
|
37 |
h, w, _ = img_lr.shape
|
@@ -139,12 +150,4 @@ if __name__ == "__main__":
|
|
139 |
# In default, we will automatically use crop to match 4x size
|
140 |
super_resolve_img(generator, input_dir, output_path, weight_dtype, crop_for_4x=True)
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
|
|
|
19 |
|
20 |
|
21 |
@torch.no_grad # You must add these time, else it will have Out of Memory
|
22 |
+
def super_resolve_img(generator, input_path, output_path=None, weight_dtype=torch.float32, downsample_threshold=720, crop_for_4x=True):
|
23 |
''' Super Resolve a low resolution image
|
24 |
Args:
|
25 |
generator (torch): the generator class that is already loaded
|
26 |
input_path (str): the path to the input lr images
|
27 |
output_path (str): the directory to store the generated images
|
28 |
weight_dtype (bool): the weight type (float32/float16)
|
29 |
+
downsample_threshold (int): the threshold of height/width (short side) to downsample the input
|
30 |
crop_for_4x (bool): whether we crop the lr images to match 4x scale (needed for some situation)
|
31 |
'''
|
32 |
print("Processing image {}".format(input_path))
|
33 |
|
34 |
# Read the image and do preprocess
|
35 |
img_lr = cv2.imread(input_path)
|
36 |
+
h, w, c = img_lr.shape
|
37 |
+
|
38 |
+
|
39 |
+
# Downsample if needed
|
40 |
+
short_side = min(h, w)
|
41 |
+
if downsample_threshold != -1 and short_side > downsample_threshold:
|
42 |
+
resize_ratio = short_side / downsample_threshold
|
43 |
+
img_lr = cv2.resize(img_lr, (int(w/resize_ratio), int(h/resize_ratio)), interpolation = cv2.INTER_LINEAR)
|
44 |
+
|
45 |
+
|
46 |
# Crop if needed
|
47 |
if crop_for_4x:
|
48 |
h, w, _ = img_lr.shape
|
|
|
150 |
# In default, we will automatically use crop to match 4x size
|
151 |
super_resolve_img(generator, input_dir, output_path, weight_dtype, crop_for_4x=True)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|