Spaces:
Running
on
T4
Running
on
T4
HikariDawn
commited on
Commit
·
8f3d49d
1
Parent(s):
6d00ac8
feat: update queue
Browse files- app.py +11 -7
- test_code/inference.py +9 -2
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os, sys
|
2 |
import cv2
|
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
import numpy as np
|
@@ -47,15 +48,16 @@ def inference(img_path, model_name):
|
|
47 |
generator = load_rrdb(weight_path, scale=2) # Directly use default way now
|
48 |
|
49 |
else:
|
50 |
-
raise gr.Error(
|
51 |
|
52 |
generator = generator.to(dtype=weight_dtype)
|
53 |
|
54 |
|
55 |
# In default, we will automatically use crop to match 4x size
|
56 |
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, crop_for_4x=True)
|
57 |
-
|
58 |
-
|
|
|
59 |
outputs = cv2.cvtColor(outputs, cv2.COLOR_RGB2BGR)
|
60 |
|
61 |
return outputs
|
@@ -70,14 +72,16 @@ if __name__ == '__main__':
|
|
70 |
|
71 |
MARKDOWN = \
|
72 |
"""
|
73 |
-
## APISR: Anime Production Inspired Real-World Anime Super-Resolution (CVPR 2024)
|
74 |
-
|
75 |
[GitHub](https://github.com/Kiteretsu77/APISR) | [Paper](https://arxiv.org/abs/2403.01598)
|
76 |
|
77 |
-
|
|
|
|
|
78 |
"""
|
79 |
|
80 |
-
block = gr.Blocks().queue()
|
81 |
with block:
|
82 |
with gr.Row():
|
83 |
gr.Markdown(MARKDOWN)
|
|
|
1 |
import os, sys
|
2 |
import cv2
|
3 |
+
import time
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
import numpy as np
|
|
|
48 |
generator = load_rrdb(weight_path, scale=2) # Directly use default way now
|
49 |
|
50 |
else:
|
51 |
+
raise gr.Error("We don't support such Model")
|
52 |
|
53 |
generator = generator.to(dtype=weight_dtype)
|
54 |
|
55 |
|
56 |
# In default, we will automatically use crop to match 4x size
|
57 |
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, crop_for_4x=True)
|
58 |
+
store_name = str(time.time()) + ".png"
|
59 |
+
save_image(super_resolved_img, store_name)
|
60 |
+
outputs = cv2.imread(store_name)
|
61 |
outputs = cv2.cvtColor(outputs, cv2.COLOR_RGB2BGR)
|
62 |
|
63 |
return outputs
|
|
|
72 |
|
73 |
MARKDOWN = \
|
74 |
"""
|
75 |
+
## <p style='text-align: center'> APISR: Anime Production Inspired Real-World Anime Super-Resolution (CVPR 2024) </p>
|
76 |
+
|
77 |
[GitHub](https://github.com/Kiteretsu77/APISR) | [Paper](https://arxiv.org/abs/2403.01598)
|
78 |
|
79 |
+
APISR aims at restoring and enhancing low-quality low-resolution anime images and video sources with various degradations from real-world scenarios.
|
80 |
+
|
81 |
+
If APISR is helpful, please help star the GitHub Repo. Thanks!
|
82 |
"""
|
83 |
|
84 |
+
block = gr.Blocks().queue(max_size=10)
|
85 |
with block:
|
86 |
with gr.Row():
|
87 |
gr.Markdown(MARKDOWN)
|
test_code/inference.py
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
import argparse
|
5 |
import os, sys, cv2, shutil, warnings
|
6 |
import torch
|
|
|
7 |
from torchvision.transforms import ToTensor
|
8 |
from torchvision.utils import save_image
|
9 |
warnings.simplefilter("default")
|
@@ -38,6 +39,12 @@ def super_resolve_img(generator, input_path, output_path=None, weight_dtype=torc
|
|
38 |
img_lr = img_lr[:4*(h//4),:,:]
|
39 |
if w % 4 != 0:
|
40 |
img_lr = img_lr[:,:4*(w//4),:]
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
# Transform to tensor
|
43 |
img_lr = cv2.cvtColor(img_lr, cv2.COLOR_BGR2RGB)
|
@@ -54,7 +61,7 @@ def super_resolve_img(generator, input_path, output_path=None, weight_dtype=torc
|
|
54 |
if output_path is not None:
|
55 |
save_image(super_resolved_img, output_path)
|
56 |
|
57 |
-
# Empty the cache
|
58 |
torch.cuda.empty_cache()
|
59 |
|
60 |
return super_resolved_img
|
@@ -71,7 +78,7 @@ if __name__ == "__main__":
|
|
71 |
parser.add_argument('--scale', type = int, default = 4, help="Up scaler factor")
|
72 |
parser.add_argument('--weight_path', type = str, default = 'pretrained/4x_APISR_GRL_GAN_generator.pth', help="Weight path directory, usually under saved_models folder")
|
73 |
parser.add_argument('--store_dir', type = str, default = 'sample_outputs', help="The folder to store the super-resolved images")
|
74 |
-
parser.add_argument('--float16_inference', type = bool, default = False, help="
|
75 |
args = parser.parse_args()
|
76 |
|
77 |
# Sample Command
|
|
|
4 |
import argparse
|
5 |
import os, sys, cv2, shutil, warnings
|
6 |
import torch
|
7 |
+
import gradio as gr
|
8 |
from torchvision.transforms import ToTensor
|
9 |
from torchvision.utils import save_image
|
10 |
warnings.simplefilter("default")
|
|
|
39 |
img_lr = img_lr[:4*(h//4),:,:]
|
40 |
if w % 4 != 0:
|
41 |
img_lr = img_lr[:,:4*(w//4),:]
|
42 |
+
|
43 |
+
# Check if the size is out of the boundary
|
44 |
+
h, w, c = img_lr.shape
|
45 |
+
if h*w > 720*1280:
|
46 |
+
raise gr.Error("The input image size is too large. The largest area we support is 720x1280=921600 pixel!")
|
47 |
+
|
48 |
|
49 |
# Transform to tensor
|
50 |
img_lr = cv2.cvtColor(img_lr, cv2.COLOR_BGR2RGB)
|
|
|
61 |
if output_path is not None:
|
62 |
save_image(super_resolved_img, output_path)
|
63 |
|
64 |
+
# Empty the cache every time you finish processing one image
|
65 |
torch.cuda.empty_cache()
|
66 |
|
67 |
return super_resolved_img
|
|
|
78 |
parser.add_argument('--scale', type = int, default = 4, help="Up scaler factor")
|
79 |
parser.add_argument('--weight_path', type = str, default = 'pretrained/4x_APISR_GRL_GAN_generator.pth', help="Weight path directory, usually under saved_models folder")
|
80 |
parser.add_argument('--store_dir', type = str, default = 'sample_outputs', help="The folder to store the super-resolved images")
|
81 |
+
parser.add_argument('--float16_inference', type = bool, default = False, help="Float16 inference, only useful in RRDB now") # Currently, this is only supported in RRDB, there is some bug with GRL model
|
82 |
args = parser.parse_args()
|
83 |
|
84 |
# Sample Command
|