Henry65's picture
Update similaritycal model
e0d476d
import json
import os
from pathlib import Path
import torch
from docarray.index import InMemoryExactNNIndex
from common.repo_doc import RepoDoc
import random
from torchmetrics.classification import Accuracy, Precision, Recall, F1Score, AUROC
from tqdm import tqdm
INDEX_PATH = Path(__file__).parent.joinpath("..\\data\\")
TOPIC_CLUSTER_PATH = Path(__file__).parent.joinpath("..\\data\\repo_topic_clusters.json")
CODE_CLUSTER_PATH = Path(__file__).parent.joinpath("..\\data\\repo_code_clusters.json")
def read_repo_cluster(filename):
# return repo name - cluster id key value pair
with open(filename, 'r', encoding='utf-8') as file:
data = json.load(file)
return data
def find_files_in_directory(directory):
# loop all index files
files = []
for file in os.listdir(directory):
if file[:5] == "index" and file[5] != ".":
files.append(os.path.join(directory, file))
return files
def read_repo_embedding():
# return repo name - embedding k-v pair
map = {}
for filename in find_files_in_directory(INDEX_PATH):
data = InMemoryExactNNIndex[RepoDoc](index_file_path=Path(__file__).parent.joinpath(filename))
docs_tmp = data._docs
for doc in docs_tmp:
map[doc.name] = doc.repository_embedding
return map
def build_cluster_repo_embedding(mode: str):
"""
build the dataset according to code cluster
where mode is "code" or "topic"
"""
embedding = read_repo_embedding()
if mode == "code":
cluster_id = read_repo_cluster(CODE_CLUSTER_PATH)
elif mode == "topic":
cluster_id = read_repo_cluster(TOPIC_CLUSTER_PATH)
else:
raise ValueError("parameter 'mode' must be 'code' or 'topic'")
data = []
for name in embedding:
data.append({'name': name, 'embedding': embedding[name], 'id': cluster_id[name]})
return data
def build_dataset(data, ratio=0.7):
"""
return the train set and test set which are like (index1, index2) : (same, not same)
"""
positive_repo = []
negative_repo = []
n = len(data)
# build the binary dataset
for i in range(n):
for j in range(i, n):
if data[i]['id'] == data[j]['id']:
positive_repo.append((i, j, (1.0, 0.0)))
positive_repo.append((j, i, (1.0, 0.0)))
else:
negative_repo.append((i, j, (0.0, 1.0)))
negative_repo.append((j, i, (0.0, 1.0)))
# make balance
positive_length = len(positive_repo)
negative_repo = random.choices(negative_repo, k=positive_length)
# split the dataset
random.shuffle(positive_repo)
random.shuffle(negative_repo)
split_index = int(positive_length * ratio)
train_set = positive_repo[:split_index] + negative_repo[:split_index]
random.shuffle(train_set)
test_set = positive_repo[split_index:] + negative_repo[split_index:]
random.shuffle(test_set)
print("Positive data:", len(positive_repo))
print("Negative data:", len(negative_repo))
return train_set, test_set
def train_epoch(epoch, model, loader, device, criterion, optimizer):
model.train()
accuracy = Accuracy(task='binary')
precision = Precision(task='binary')
recall = Recall(task='binary')
f1 = F1Score(task='binary')
auroc = AUROC(task='binary')
accuracy.to(device)
precision.to(device)
recall.to(device)
f1.to(device)
auroc.to(device)
total_loss = 0
count = 0
for repo1, repo2, label in tqdm(loader):
count += len(label)
optimizer.zero_grad()
repo1 = repo1.to(device)
repo2 = repo2.to(device)
label = label.to(device)
pred = model(repo1, repo2)
loss = criterion(pred, label)
loss.backward()
total_loss += loss.item()
optimizer.step()
accuracy(pred, label)
precision(pred, label)
recall(pred, label)
f1(pred, label)
auroc(pred, label)
print("Epoch", epoch, "Train loss:", total_loss / count, "Acc", accuracy.compute().item(), "Precision:",
precision.compute().item(), "Recall:", recall.compute().item(), "F1:", f1.compute().item(),
"AUROC:", auroc.compute().item())
def evaluate(model, loader, device, criterion):
model.eval()
with torch.no_grad():
test_accuracy = Accuracy(task='binary')
test_precision = Precision(task='binary')
test_recall = Recall(task='binary')
test_f1 = F1Score(task='binary')
test_auroc = AUROC(task='binary')
test_accuracy.to(device)
test_precision.to(device)
test_recall.to(device)
test_f1.to(device)
test_auroc.to(device)
total_loss = 0
count = 0
for repo1, repo2, label in tqdm(loader):
count += len(label)
repo1 = repo1.to(device)
repo2 = repo2.to(device)
label = label.to(device)
pred = model(repo1, repo2)
loss = criterion(pred, label)
total_loss += loss.item()
test_accuracy(pred, label)
test_precision(pred, label)
test_recall(pred, label)
test_f1(pred, label)
test_auroc(pred, label)
print("Test loss:", total_loss / count, "Acc", test_accuracy.compute().item(), "Precision:",
test_precision.compute().item(), "Recall:", test_recall.compute().item(), "F1:", test_f1.compute().item(),
"AUROC:", test_auroc.compute().item())
return test_accuracy.compute().item(), total_loss / count, test_precision.compute().item(), test_recall.compute().item(), \
test_f1.compute().item(), test_auroc.compute().item()
def calculate_similarity(model, repo_emb1, repo_emb2):
return torch.nn.functional.softmax(model(repo_emb1, repo_emb2) + model(repo_emb2, repo_emb1), dim=1)