Update similaritycal model
Browse files- .gitignore +6 -0
- app.py +24 -18
- assets/Repository-Code Cluster Assignments.png +0 -0
- assets/Repository-Topic Cluster Assignments.png +0 -0
- common/pair_classifier.py +4 -3
- similarityCal/__init__.py +0 -0
- data/SimilarityCal_model_NO1.pt → similarityCal/code.pt +2 -2
- similarityCal/topic.pt +3 -0
- similarityCal/utils.py +169 -0
.gitignore
CHANGED
@@ -161,3 +161,9 @@ cython_debug/
|
|
161 |
|
162 |
# Streamlit configs
|
163 |
.streamlit/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
# Streamlit configs
|
163 |
.streamlit/
|
164 |
+
|
165 |
+
# IDE files
|
166 |
+
.idea/
|
167 |
+
|
168 |
+
# Mac os files
|
169 |
+
*.DS_Store
|
app.py
CHANGED
@@ -7,21 +7,22 @@ import pandas as pd
|
|
7 |
import numpy as np
|
8 |
import streamlit as st
|
9 |
from pathlib import Path
|
10 |
-
from torch import nn
|
11 |
from docarray import DocList
|
12 |
from docarray.index import InMemoryExactNNIndex
|
13 |
from transformers import pipeline
|
14 |
from transformers import AutoTokenizer, AutoModel
|
15 |
from common.repo_doc import RepoDoc
|
16 |
-
from common.pair_classifier import PairClassifier
|
17 |
from nltk.stem import WordNetLemmatizer
|
18 |
|
|
|
|
|
19 |
nltk.download("wordnet")
|
20 |
KMEANS_TOPIC_MODEL_PATH = Path(__file__).parent.joinpath("data/kmeans_model_topic_scibert.pkl")
|
21 |
KMEANS_CODE_MODEL_PATH = Path(__file__).parent.joinpath("data/kmeans_model_code_unixcoder.pkl")
|
22 |
-
|
23 |
SCIBERT_MODEL_PATH = "allenai/scibert_scivocab_uncased"
|
24 |
# SCIBERT_MODEL_PATH = Path(__file__).parent.joinpath("data/scibert_scivocab_uncased") # Download locally
|
|
|
25 |
device = (
|
26 |
"cuda"
|
27 |
if torch.cuda.is_available()
|
@@ -136,16 +137,20 @@ def load_code_kmeans_model():
|
|
136 |
|
137 |
|
138 |
@st.cache_resource(show_spinner="Loading SimilarityCal model...")
|
139 |
-
def load_similaritycal_model():
|
140 |
"""
|
141 |
The function to load SimilarityCal model
|
|
|
142 |
:return: the SimilarityCal model
|
143 |
"""
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
|
|
|
|
149 |
return sim_cal_model
|
150 |
|
151 |
|
@@ -247,27 +252,27 @@ def run_similaritycal_search(index, repo_clusters, model, query_doc, query_clust
|
|
247 |
:return: result dataframe
|
248 |
"""
|
249 |
docs = index._docs
|
250 |
-
input_embeddings_list = []
|
251 |
result_dl = DocList[RepoDoc]()
|
|
|
252 |
for doc in docs:
|
253 |
if query_cluster_number != repo_clusters[doc.name]:
|
254 |
continue
|
255 |
if doc.name != query_doc.name:
|
256 |
e1, e2 = (torch.Tensor(query_doc.repository_embedding),
|
257 |
torch.Tensor(doc.repository_embedding))
|
258 |
-
|
259 |
-
|
260 |
result_dl.append(doc)
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
similarity_scores =
|
266 |
df = result_dl.to_dataframe()
|
267 |
df["scores"] = similarity_scores
|
268 |
|
269 |
sorted_df = df.sort_values(by='scores', ascending=False).reset_index(drop=True).head(limit)
|
270 |
-
sorted_df["rankings"] = sorted_df["scores"].rank(ascending=False).astype(int)
|
271 |
sorted_df.drop(columns="scores", inplace=True)
|
272 |
|
273 |
return sorted_df
|
@@ -283,7 +288,6 @@ if __name__ == "__main__":
|
|
283 |
tokenizer, scibert_model = load_scibert_model()
|
284 |
topic_kmeans = load_topic_kmeans_model()
|
285 |
code_kmeans = load_code_kmeans_model()
|
286 |
-
sim_cal_model = load_similaritycal_model()
|
287 |
|
288 |
# Setting the sidebar
|
289 |
with st.sidebar:
|
@@ -507,6 +511,7 @@ if __name__ == "__main__":
|
|
507 |
|
508 |
with code_cluster_tab:
|
509 |
if query_doc.repository_embedding is not None:
|
|
|
510 |
cluster_df = run_similaritycal_search(index, repo_code_clusters, sim_cal_model,
|
511 |
query_doc, code_cluster_number, limit)
|
512 |
code_cluster_numbers = run_code_cluster_search(repo_code_clusters, cluster_df["name"])
|
@@ -519,6 +524,7 @@ if __name__ == "__main__":
|
|
519 |
|
520 |
with topic_cluster_tab:
|
521 |
if query_doc.repository_embedding is not None:
|
|
|
522 |
cluster_df = run_similaritycal_search(index, repo_topic_clusters, sim_cal_model,
|
523 |
query_doc, topic_cluster_number, limit)
|
524 |
topic_cluster_numbers = run_topic_cluster_search(repo_topic_clusters, cluster_df["name"])
|
|
|
7 |
import numpy as np
|
8 |
import streamlit as st
|
9 |
from pathlib import Path
|
|
|
10 |
from docarray import DocList
|
11 |
from docarray.index import InMemoryExactNNIndex
|
12 |
from transformers import pipeline
|
13 |
from transformers import AutoTokenizer, AutoModel
|
14 |
from common.repo_doc import RepoDoc
|
|
|
15 |
from nltk.stem import WordNetLemmatizer
|
16 |
|
17 |
+
from similarityCal.utils import calculate_similarity
|
18 |
+
|
19 |
nltk.download("wordnet")
|
20 |
KMEANS_TOPIC_MODEL_PATH = Path(__file__).parent.joinpath("data/kmeans_model_topic_scibert.pkl")
|
21 |
KMEANS_CODE_MODEL_PATH = Path(__file__).parent.joinpath("data/kmeans_model_code_unixcoder.pkl")
|
22 |
+
|
23 |
SCIBERT_MODEL_PATH = "allenai/scibert_scivocab_uncased"
|
24 |
# SCIBERT_MODEL_PATH = Path(__file__).parent.joinpath("data/scibert_scivocab_uncased") # Download locally
|
25 |
+
|
26 |
device = (
|
27 |
"cuda"
|
28 |
if torch.cuda.is_available()
|
|
|
137 |
|
138 |
|
139 |
@st.cache_resource(show_spinner="Loading SimilarityCal model...")
|
140 |
+
def load_similaritycal_model(mode: str):
|
141 |
"""
|
142 |
The function to load SimilarityCal model
|
143 |
+
mode: 'code' or 'topic'
|
144 |
:return: the SimilarityCal model
|
145 |
"""
|
146 |
+
if mode == 'topic':
|
147 |
+
sim_cal_model = torch.load('similarityCal/topic.pt')
|
148 |
+
elif mode == 'code':
|
149 |
+
sim_cal_model = torch.load('similarityCal/code.pt')
|
150 |
+
else:
|
151 |
+
raise ValueError("parameter 'mode' must be 'code' or 'topic'")
|
152 |
+
sim_cal_model.to(device)
|
153 |
+
sim_cal_model.eval()
|
154 |
return sim_cal_model
|
155 |
|
156 |
|
|
|
252 |
:return: result dataframe
|
253 |
"""
|
254 |
docs = index._docs
|
|
|
255 |
result_dl = DocList[RepoDoc]()
|
256 |
+
e1_list, e2_list = [], []
|
257 |
for doc in docs:
|
258 |
if query_cluster_number != repo_clusters[doc.name]:
|
259 |
continue
|
260 |
if doc.name != query_doc.name:
|
261 |
e1, e2 = (torch.Tensor(query_doc.repository_embedding),
|
262 |
torch.Tensor(doc.repository_embedding))
|
263 |
+
e1_list.append(e1)
|
264 |
+
e2_list.append(e2)
|
265 |
result_dl.append(doc)
|
266 |
|
267 |
+
e1_list = torch.stack(e1_list).to(device)
|
268 |
+
e2_list = torch.stack(e2_list).to(device)
|
269 |
+
model.eval()
|
270 |
+
similarity_scores = calculate_similarity(model, e1_list, e2_list)[:, 1].cpu().detach().numpy()
|
271 |
df = result_dl.to_dataframe()
|
272 |
df["scores"] = similarity_scores
|
273 |
|
274 |
sorted_df = df.sort_values(by='scores', ascending=False).reset_index(drop=True).head(limit)
|
275 |
+
sorted_df["rankings"] = sorted_df["scores"].rank(ascending=False, method='first').astype(int)
|
276 |
sorted_df.drop(columns="scores", inplace=True)
|
277 |
|
278 |
return sorted_df
|
|
|
288 |
tokenizer, scibert_model = load_scibert_model()
|
289 |
topic_kmeans = load_topic_kmeans_model()
|
290 |
code_kmeans = load_code_kmeans_model()
|
|
|
291 |
|
292 |
# Setting the sidebar
|
293 |
with st.sidebar:
|
|
|
511 |
|
512 |
with code_cluster_tab:
|
513 |
if query_doc.repository_embedding is not None:
|
514 |
+
sim_cal_model = load_similaritycal_model("code")
|
515 |
cluster_df = run_similaritycal_search(index, repo_code_clusters, sim_cal_model,
|
516 |
query_doc, code_cluster_number, limit)
|
517 |
code_cluster_numbers = run_code_cluster_search(repo_code_clusters, cluster_df["name"])
|
|
|
524 |
|
525 |
with topic_cluster_tab:
|
526 |
if query_doc.repository_embedding is not None:
|
527 |
+
sim_cal_model = load_similaritycal_model("topic")
|
528 |
cluster_df = run_similaritycal_search(index, repo_topic_clusters, sim_cal_model,
|
529 |
query_doc, topic_cluster_number, limit)
|
530 |
topic_cluster_numbers = run_topic_cluster_search(repo_topic_clusters, cluster_df["name"])
|
assets/Repository-Code Cluster Assignments.png
CHANGED
assets/Repository-Topic Cluster Assignments.png
CHANGED
common/pair_classifier.py
CHANGED
@@ -29,9 +29,10 @@ class PairClassifier(nn.Module):
|
|
29 |
nn.Linear(1000, 2),
|
30 |
)
|
31 |
|
32 |
-
def forward(self,
|
33 |
-
|
34 |
-
|
|
|
35 |
twins = torch.cat([e1, e2], dim=1)
|
36 |
res = self.net(twins)
|
37 |
return res
|
|
|
29 |
nn.Linear(1000, 2),
|
30 |
)
|
31 |
|
32 |
+
def forward(self, data1, data2):
|
33 |
+
# modify the logic of loading the data
|
34 |
+
e1 = self.encoder(data1)
|
35 |
+
e2 = self.encoder(data2)
|
36 |
twins = torch.cat([e1, e2], dim=1)
|
37 |
res = self.net(twins)
|
38 |
return res
|
similarityCal/__init__.py
ADDED
File without changes
|
data/SimilarityCal_model_NO1.pt → similarityCal/code.pt
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fca98b665ac3a35db1fa333b21f97d71cda5f2af27229d9e7d93b2fa8696a03
|
3 |
+
size 102424453
|
similarityCal/topic.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4b5481fc8c348f1784c29374cde09ad9374ad7c201e33b4748e6153c1ab4c832
|
3 |
+
size 102424470
|
similarityCal/utils.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from docarray.index import InMemoryExactNNIndex
|
7 |
+
from common.repo_doc import RepoDoc
|
8 |
+
import random
|
9 |
+
from torchmetrics.classification import Accuracy, Precision, Recall, F1Score, AUROC
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
INDEX_PATH = Path(__file__).parent.joinpath("..\\data\\")
|
13 |
+
TOPIC_CLUSTER_PATH = Path(__file__).parent.joinpath("..\\data\\repo_topic_clusters.json")
|
14 |
+
CODE_CLUSTER_PATH = Path(__file__).parent.joinpath("..\\data\\repo_code_clusters.json")
|
15 |
+
|
16 |
+
|
17 |
+
def read_repo_cluster(filename):
|
18 |
+
# return repo name - cluster id key value pair
|
19 |
+
with open(filename, 'r', encoding='utf-8') as file:
|
20 |
+
data = json.load(file)
|
21 |
+
return data
|
22 |
+
|
23 |
+
|
24 |
+
def find_files_in_directory(directory):
|
25 |
+
# loop all index files
|
26 |
+
files = []
|
27 |
+
for file in os.listdir(directory):
|
28 |
+
if file[:5] == "index" and file[5] != ".":
|
29 |
+
files.append(os.path.join(directory, file))
|
30 |
+
return files
|
31 |
+
|
32 |
+
|
33 |
+
def read_repo_embedding():
|
34 |
+
# return repo name - embedding k-v pair
|
35 |
+
map = {}
|
36 |
+
for filename in find_files_in_directory(INDEX_PATH):
|
37 |
+
data = InMemoryExactNNIndex[RepoDoc](index_file_path=Path(__file__).parent.joinpath(filename))
|
38 |
+
docs_tmp = data._docs
|
39 |
+
for doc in docs_tmp:
|
40 |
+
map[doc.name] = doc.repository_embedding
|
41 |
+
return map
|
42 |
+
|
43 |
+
|
44 |
+
def build_cluster_repo_embedding(mode: str):
|
45 |
+
"""
|
46 |
+
build the dataset according to code cluster
|
47 |
+
where mode is "code" or "topic"
|
48 |
+
"""
|
49 |
+
embedding = read_repo_embedding()
|
50 |
+
if mode == "code":
|
51 |
+
cluster_id = read_repo_cluster(CODE_CLUSTER_PATH)
|
52 |
+
elif mode == "topic":
|
53 |
+
cluster_id = read_repo_cluster(TOPIC_CLUSTER_PATH)
|
54 |
+
else:
|
55 |
+
raise ValueError("parameter 'mode' must be 'code' or 'topic'")
|
56 |
+
data = []
|
57 |
+
for name in embedding:
|
58 |
+
data.append({'name': name, 'embedding': embedding[name], 'id': cluster_id[name]})
|
59 |
+
return data
|
60 |
+
|
61 |
+
|
62 |
+
def build_dataset(data, ratio=0.7):
|
63 |
+
"""
|
64 |
+
return the train set and test set which are like (index1, index2) : (same, not same)
|
65 |
+
"""
|
66 |
+
positive_repo = []
|
67 |
+
negative_repo = []
|
68 |
+
n = len(data)
|
69 |
+
# build the binary dataset
|
70 |
+
for i in range(n):
|
71 |
+
for j in range(i, n):
|
72 |
+
if data[i]['id'] == data[j]['id']:
|
73 |
+
positive_repo.append((i, j, (1.0, 0.0)))
|
74 |
+
positive_repo.append((j, i, (1.0, 0.0)))
|
75 |
+
else:
|
76 |
+
negative_repo.append((i, j, (0.0, 1.0)))
|
77 |
+
negative_repo.append((j, i, (0.0, 1.0)))
|
78 |
+
# make balance
|
79 |
+
positive_length = len(positive_repo)
|
80 |
+
negative_repo = random.choices(negative_repo, k=positive_length)
|
81 |
+
# split the dataset
|
82 |
+
random.shuffle(positive_repo)
|
83 |
+
random.shuffle(negative_repo)
|
84 |
+
split_index = int(positive_length * ratio)
|
85 |
+
train_set = positive_repo[:split_index] + negative_repo[:split_index]
|
86 |
+
random.shuffle(train_set)
|
87 |
+
test_set = positive_repo[split_index:] + negative_repo[split_index:]
|
88 |
+
random.shuffle(test_set)
|
89 |
+
print("Positive data:", len(positive_repo))
|
90 |
+
print("Negative data:", len(negative_repo))
|
91 |
+
return train_set, test_set
|
92 |
+
|
93 |
+
|
94 |
+
def train_epoch(epoch, model, loader, device, criterion, optimizer):
|
95 |
+
model.train()
|
96 |
+
accuracy = Accuracy(task='binary')
|
97 |
+
precision = Precision(task='binary')
|
98 |
+
recall = Recall(task='binary')
|
99 |
+
f1 = F1Score(task='binary')
|
100 |
+
auroc = AUROC(task='binary')
|
101 |
+
accuracy.to(device)
|
102 |
+
precision.to(device)
|
103 |
+
recall.to(device)
|
104 |
+
f1.to(device)
|
105 |
+
auroc.to(device)
|
106 |
+
total_loss = 0
|
107 |
+
count = 0
|
108 |
+
for repo1, repo2, label in tqdm(loader):
|
109 |
+
count += len(label)
|
110 |
+
optimizer.zero_grad()
|
111 |
+
repo1 = repo1.to(device)
|
112 |
+
repo2 = repo2.to(device)
|
113 |
+
label = label.to(device)
|
114 |
+
pred = model(repo1, repo2)
|
115 |
+
|
116 |
+
loss = criterion(pred, label)
|
117 |
+
loss.backward()
|
118 |
+
total_loss += loss.item()
|
119 |
+
optimizer.step()
|
120 |
+
|
121 |
+
accuracy(pred, label)
|
122 |
+
precision(pred, label)
|
123 |
+
recall(pred, label)
|
124 |
+
f1(pred, label)
|
125 |
+
auroc(pred, label)
|
126 |
+
print("Epoch", epoch, "Train loss:", total_loss / count, "Acc", accuracy.compute().item(), "Precision:",
|
127 |
+
precision.compute().item(), "Recall:", recall.compute().item(), "F1:", f1.compute().item(),
|
128 |
+
"AUROC:", auroc.compute().item())
|
129 |
+
|
130 |
+
|
131 |
+
def evaluate(model, loader, device, criterion):
|
132 |
+
model.eval()
|
133 |
+
with torch.no_grad():
|
134 |
+
test_accuracy = Accuracy(task='binary')
|
135 |
+
test_precision = Precision(task='binary')
|
136 |
+
test_recall = Recall(task='binary')
|
137 |
+
test_f1 = F1Score(task='binary')
|
138 |
+
test_auroc = AUROC(task='binary')
|
139 |
+
test_accuracy.to(device)
|
140 |
+
test_precision.to(device)
|
141 |
+
test_recall.to(device)
|
142 |
+
test_f1.to(device)
|
143 |
+
test_auroc.to(device)
|
144 |
+
total_loss = 0
|
145 |
+
count = 0
|
146 |
+
for repo1, repo2, label in tqdm(loader):
|
147 |
+
count += len(label)
|
148 |
+
repo1 = repo1.to(device)
|
149 |
+
repo2 = repo2.to(device)
|
150 |
+
label = label.to(device)
|
151 |
+
pred = model(repo1, repo2)
|
152 |
+
loss = criterion(pred, label)
|
153 |
+
total_loss += loss.item()
|
154 |
+
|
155 |
+
test_accuracy(pred, label)
|
156 |
+
test_precision(pred, label)
|
157 |
+
test_recall(pred, label)
|
158 |
+
test_f1(pred, label)
|
159 |
+
test_auroc(pred, label)
|
160 |
+
print("Test loss:", total_loss / count, "Acc", test_accuracy.compute().item(), "Precision:",
|
161 |
+
test_precision.compute().item(), "Recall:", test_recall.compute().item(), "F1:", test_f1.compute().item(),
|
162 |
+
"AUROC:", test_auroc.compute().item())
|
163 |
+
|
164 |
+
return test_accuracy.compute().item(), total_loss / count, test_precision.compute().item(), test_recall.compute().item(), \
|
165 |
+
test_f1.compute().item(), test_auroc.compute().item()
|
166 |
+
|
167 |
+
|
168 |
+
def calculate_similarity(model, repo_emb1, repo_emb2):
|
169 |
+
return torch.nn.functional.softmax(model(repo_emb1, repo_emb2) + model(repo_emb2, repo_emb1), dim=1)
|