Spaces:
Runtime error
Runtime error
import re | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
model = AutoModelForCausalLM.from_pretrained( | |
'parsak/codegen-350M-mono-lora-instruction', | |
) | |
tokenizer = AutoTokenizer.from_pretrained('Salesforce/codegen-350M-mono') | |
tokenizer.pad_token_id = 0 # different to <eos> | |
tokenizer.padding_side = "left" # Allow batched inference | |
def extract_code(input_text): | |
pattern = r"'''py\n(.*?)'''" | |
match = re.search(pattern, input_text, re.DOTALL) | |
if match: | |
return match.group(1) | |
else: | |
return None # Return None if no match is found | |
def generate_code(input_text): | |
input_ids = tokenizer(input_text, return_tensors="pt").input_ids | |
generated_ids = model.generate(input_ids, max_length=128) | |
result = tokenizer.decode(generated_ids[0], skip_special_tokens=True) | |
return extract_code(result) | |
def respond(message, chat_history, additional_inputs): | |
return f"Here's an example code:\n\n```python\n{generate_code(message)}\n```" | |
gr.ChatInterface(respond, | |
retry_btn= gr.Button(value="Retry"), | |
undo_btn=None, clear_btn=gr.Button(value="Clear"), | |
additional_inputs=[ | |
gr.Dropdown(["annen", "baban"]) | |
] | |
).launch() | |