Spaces:
Runtime error
Runtime error
File size: 1,256 Bytes
26e78ff 217a305 26e78ff 217a305 26e78ff 5b195fc 26e78ff ebb322e 217a305 c05a9c3 b52a718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import re
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
'parsak/codegen-350M-mono-lora-instruction',
)
tokenizer = AutoTokenizer.from_pretrained('Salesforce/codegen-350M-mono')
tokenizer.pad_token_id = 0 # different to <eos>
tokenizer.padding_side = "left" # Allow batched inference
def extract_code(input_text):
pattern = r"'''py\n(.*?)'''"
match = re.search(pattern, input_text, re.DOTALL)
if match:
return match.group(1)
else:
return None # Return None if no match is found
def generate_code(input_text):
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
generated_ids = model.generate(input_ids, max_length=128)
result = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
return extract_code(result)
def respond(message, chat_history, additional_inputs):
return f"Here's an example code:\n\n```python\n{generate_code(message)}\n```"
gr.ChatInterface(respond,
retry_btn= gr.Button(value="Retry"),
undo_btn=None, clear_btn=gr.Button(value="Clear"),
additional_inputs=[
gr.Dropdown(["annen", "baban"])
]
).launch()
|