Spaces:
Sleeping
Sleeping
import en_core_web_sm | |
import json | |
import numpy as np | |
import random | |
import re | |
import torch | |
from transformers import ( | |
AutoTokenizer, | |
AutoModelForSeq2SeqLM, | |
AutoModelForSequenceClassification, | |
) | |
from typing import Any, List, Mapping, Tuple | |
class QuestionGenerator: | |
"""A transformer-based NLP system for generating reading comprehension-style questions from | |
texts. It can generate full sentence questions, multiple choice questions, or a mix of the | |
two styles. | |
To filter out low quality questions, questions are assigned a score and ranked once they have | |
been generated. Only the top k questions will be returned. This behaviour can be turned off | |
by setting use_evaluator=False. | |
""" | |
def __init__(self) -> None: | |
QG_PRETRAINED = "iarfmoose/t5-base-question-generator" | |
self.ANSWER_TOKEN = "<answer>" | |
self.CONTEXT_TOKEN = "<context>" | |
self.SEQ_LENGTH = 512 | |
self.device = torch.device( | |
"cuda" if torch.cuda.is_available() else "cpu") | |
self.qg_tokenizer = AutoTokenizer.from_pretrained( | |
QG_PRETRAINED, use_fast=False) | |
self.qg_model = AutoModelForSeq2SeqLM.from_pretrained(QG_PRETRAINED) | |
self.qg_model.to(self.device) | |
self.qg_model.eval() | |
self.qa_evaluator = QAEvaluator() | |
def generate( | |
self, | |
article: str, | |
use_evaluator: bool = True, | |
num_questions: bool = None, | |
answer_style: str = "all" | |
) -> List: | |
"""Takes an article and generates a set of question and answer pairs. If use_evaluator | |
is True then QA pairs will be ranked and filtered based on their quality. answer_style | |
should selected from ["all", "sentences", "multiple_choice"]. | |
""" | |
print("Generating questions...\n") | |
qg_inputs, qg_answers = self.generate_qg_inputs(article, answer_style) | |
generated_questions = self.generate_questions_from_inputs(qg_inputs) | |
message = "{} questions doesn't match {} answers".format( | |
len(generated_questions), len(qg_answers) | |
) | |
assert len(generated_questions) == len(qg_answers), message | |
if use_evaluator: | |
print("Evaluating QA pairs...\n") | |
encoded_qa_pairs = self.qa_evaluator.encode_qa_pairs( | |
generated_questions, qg_answers | |
) | |
scores = self.qa_evaluator.get_scores(encoded_qa_pairs) | |
if num_questions: | |
qa_list = self._get_ranked_qa_pairs( | |
generated_questions, qg_answers, scores, num_questions | |
) | |
else: | |
qa_list = self._get_ranked_qa_pairs( | |
generated_questions, qg_answers, scores | |
) | |
else: | |
print("Skipping evaluation step.\n") | |
qa_list = self._get_all_qa_pairs(generated_questions, qg_answers) | |
return qa_list | |
def generate_qg_inputs(self, text: str, answer_style: str) -> Tuple[List[str], List[str]]: | |
"""Given a text, returns a list of model inputs and a list of corresponding answers. | |
Model inputs take the form "answer_token <answer text> context_token <context text>" where | |
the answer is a string extracted from the text, and the context is the wider text surrounding | |
the context. | |
""" | |
VALID_ANSWER_STYLES = ["all", "sentences", "multiple_choice"] | |
if answer_style not in VALID_ANSWER_STYLES: | |
raise ValueError( | |
"Invalid answer style {}. Please choose from {}".format( | |
answer_style, VALID_ANSWER_STYLES | |
) | |
) | |
inputs = [] | |
answers = [] | |
if answer_style == "sentences" or answer_style == "all": | |
segments = self._split_into_segments(text) | |
for segment in segments: | |
sentences = self._split_text(segment) | |
prepped_inputs, prepped_answers = self._prepare_qg_inputs( | |
sentences, segment | |
) | |
inputs.extend(prepped_inputs) | |
answers.extend(prepped_answers) | |
if answer_style == "multiple_choice" or answer_style == "all": | |
sentences = self._split_text(text) | |
prepped_inputs, prepped_answers = self._prepare_qg_inputs_MC( | |
sentences | |
) | |
inputs.extend(prepped_inputs) | |
answers.extend(prepped_answers) | |
return inputs, answers | |
def generate_questions_from_inputs(self, qg_inputs: List) -> List[str]: | |
"""Given a list of concatenated answers and contexts, with the form: | |
"answer_token <answer text> context_token <context text>", generates a list of | |
questions. | |
""" | |
generated_questions = [] | |
for qg_input in qg_inputs: | |
question = self._generate_question(qg_input) | |
generated_questions.append(question) | |
return generated_questions | |
def _split_text(self, text: str) -> List[str]: | |
"""Splits the text into sentences, and attempts to split or truncate long sentences.""" | |
MAX_SENTENCE_LEN = 128 | |
sentences = re.findall(".*?[.!\?]", text) | |
cut_sentences = [] | |
for sentence in sentences: | |
if len(sentence) > MAX_SENTENCE_LEN: | |
cut_sentences.extend(re.split("[,;:)]", sentence)) | |
# remove useless post-quote sentence fragments | |
cut_sentences = [s for s in sentences if len(s.split(" ")) > 5] | |
sentences = sentences + cut_sentences | |
return list(set([s.strip(" ") for s in sentences])) | |
def _split_into_segments(self, text: str) -> List[str]: | |
"""Splits a long text into segments short enough to be input into the transformer network. | |
Segments are used as context for question generation. | |
""" | |
MAX_TOKENS = 490 | |
paragraphs = text.split("\n") | |
tokenized_paragraphs = [ | |
self.qg_tokenizer(p)["input_ids"] for p in paragraphs if len(p) > 0 | |
] | |
segments = [] | |
while len(tokenized_paragraphs) > 0: | |
segment = [] | |
while len(segment) < MAX_TOKENS and len(tokenized_paragraphs) > 0: | |
paragraph = tokenized_paragraphs.pop(0) | |
segment.extend(paragraph) | |
segments.append(segment) | |
return [self.qg_tokenizer.decode(s, skip_special_tokens=True) for s in segments] | |
def _prepare_qg_inputs( | |
self, | |
sentences: List[str], | |
text: str | |
) -> Tuple[List[str], List[str]]: | |
"""Uses sentences as answers and the text as context. Returns a tuple of (model inputs, answers). | |
Model inputs are "answer_token <answer text> context_token <context text>" | |
""" | |
inputs = [] | |
answers = [] | |
for sentence in sentences: | |
qg_input = f"{self.ANSWER_TOKEN} {sentence} {self.CONTEXT_TOKEN} {text}" | |
inputs.append(qg_input) | |
answers.append(sentence) | |
return inputs, answers | |
def _prepare_qg_inputs_MC(self, sentences: List[str]) -> Tuple[List[str], List[str]]: | |
"""Performs NER on the text, and uses extracted entities are candidate answers for multiple-choice | |
questions. Sentences are used as context, and entities as answers. Returns a tuple of (model inputs, answers). | |
Model inputs are "answer_token <answer text> context_token <context text>" | |
""" | |
spacy_nlp = en_core_web_sm.load() | |
docs = list(spacy_nlp.pipe(sentences, disable=["parser"])) | |
inputs_from_text = [] | |
answers_from_text = [] | |
for doc, sentence in zip(docs, sentences): | |
entities = doc.ents | |
if entities: | |
for entity in entities: | |
qg_input = f"{self.ANSWER_TOKEN} {entity} {self.CONTEXT_TOKEN} {sentence}" | |
answers = self._get_MC_answers(entity, docs) | |
inputs_from_text.append(qg_input) | |
answers_from_text.append(answers) | |
return inputs_from_text, answers_from_text | |
def _get_MC_answers(self, correct_answer: Any, docs: Any) -> List[Mapping[str, Any]]: | |
"""Finds a set of alternative answers for a multiple-choice question. Will attempt to find | |
alternatives of the same entity type as correct_answer if possible. | |
""" | |
entities = [] | |
for doc in docs: | |
entities.extend([{"text": e.text, "label_": e.label_} | |
for e in doc.ents]) | |
# remove duplicate elements | |
entities_json = [json.dumps(kv) for kv in entities] | |
pool = set(entities_json) | |
num_choices = ( | |
min(4, len(pool)) - 1 | |
) # -1 because we already have the correct answer | |
# add the correct answer | |
final_choices = [] | |
correct_label = correct_answer.label_ | |
final_choices.append({"answer": correct_answer.text, "correct": True}) | |
pool.remove( | |
json.dumps({"text": correct_answer.text, | |
"label_": correct_answer.label_}) | |
) | |
# find answers with the same NER label | |
matches = [e for e in pool if correct_label in e] | |
# if we don't have enough then add some other random answers | |
if len(matches) < num_choices: | |
choices = matches | |
pool = pool.difference(set(choices)) | |
choices.extend(random.sample(pool, num_choices - len(choices))) | |
else: | |
choices = random.sample(matches, num_choices) | |
choices = [json.loads(s) for s in choices] | |
for choice in choices: | |
final_choices.append({"answer": choice["text"], "correct": False}) | |
random.shuffle(final_choices) | |
return final_choices | |
def _generate_question(self, qg_input: str) -> str: | |
"""Takes qg_input which is the concatenated answer and context, and uses it to generate | |
a question sentence. The generated question is decoded and then returned. | |
""" | |
encoded_input = self._encode_qg_input(qg_input) | |
output = self.qg_model.generate(input_ids=encoded_input["input_ids"]) | |
question = self.qg_tokenizer.decode( | |
output[0], | |
skip_special_tokens=True | |
) | |
return question | |
def _encode_qg_input(self, qg_input: str) -> torch.tensor: | |
"""Tokenizes a string and returns a tensor of input ids corresponding to indices of tokens in | |
the vocab. | |
""" | |
return self.qg_tokenizer( | |
qg_input, | |
padding='max_length', | |
max_length=self.SEQ_LENGTH, | |
truncation=True, | |
return_tensors="pt", | |
).to(self.device) | |
def _get_ranked_qa_pairs( | |
self, generated_questions: List[str], qg_answers: List[str], scores, num_questions: int = 10 | |
) -> List[Mapping[str, str]]: | |
"""Ranks generated questions according to scores, and returns the top num_questions examples. | |
""" | |
if num_questions > len(scores): | |
num_questions = len(scores) | |
print(( | |
f"\nWas only able to generate {num_questions} questions.", | |
"For more questions, please input a longer text.") | |
) | |
qa_list = [] | |
for i in range(num_questions): | |
index = scores[i] | |
qa = { | |
"question": generated_questions[index].split("?")[0] + "?", | |
"answer": qg_answers[index] | |
} | |
qa_list.append(qa) | |
return qa_list | |
def _get_all_qa_pairs(self, generated_questions: List[str], qg_answers: List[str]): | |
"""Formats question and answer pairs without ranking or filtering.""" | |
qa_list = [] | |
for question, answer in zip(generated_questions, qg_answers): | |
qa = { | |
"question": question.split("?")[0] + "?", | |
"answer": answer | |
} | |
qa_list.append(qa) | |
return qa_list | |
class QAEvaluator: | |
"""Wrapper for a transformer model which evaluates the quality of question-answer pairs. | |
Given a QA pair, the model will generate a score. Scores can be used to rank and filter | |
QA pairs. | |
""" | |
def __init__(self) -> None: | |
QAE_PRETRAINED = "iarfmoose/bert-base-cased-qa-evaluator" | |
self.SEQ_LENGTH = 512 | |
self.device = torch.device( | |
"cuda" if torch.cuda.is_available() else "cpu") | |
self.qae_tokenizer = AutoTokenizer.from_pretrained(QAE_PRETRAINED) | |
self.qae_model = AutoModelForSequenceClassification.from_pretrained( | |
QAE_PRETRAINED | |
) | |
self.qae_model.to(self.device) | |
self.qae_model.eval() | |
def encode_qa_pairs(self, questions: List[str], answers: List[str]) -> List[torch.tensor]: | |
"""Takes a list of questions and a list of answers and encodes them as a list of tensors.""" | |
encoded_pairs = [] | |
for question, answer in zip(questions, answers): | |
encoded_qa = self._encode_qa(question, answer) | |
encoded_pairs.append(encoded_qa.to(self.device)) | |
return encoded_pairs | |
def get_scores(self, encoded_qa_pairs: List[torch.tensor]) -> List[float]: | |
"""Generates scores for a list of encoded QA pairs.""" | |
scores = {} | |
for i in range(len(encoded_qa_pairs)): | |
scores[i] = self._evaluate_qa(encoded_qa_pairs[i]) | |
return [ | |
k for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True) | |
] | |
def _encode_qa(self, question: str, answer: str) -> torch.tensor: | |
"""Concatenates a question and answer, and then tokenizes them. Returns a tensor of | |
input ids corresponding to indices in the vocab. | |
""" | |
if type(answer) is list: | |
for a in answer: | |
if a["correct"]: | |
correct_answer = a["answer"] | |
else: | |
correct_answer = answer | |
return self.qae_tokenizer( | |
text=question, | |
text_pair=correct_answer, | |
padding="max_length", | |
max_length=self.SEQ_LENGTH, | |
truncation=True, | |
return_tensors="pt", | |
) | |
def _evaluate_qa(self, encoded_qa_pair: torch.tensor) -> float: | |
"""Takes an encoded QA pair and returns a score.""" | |
output = self.qae_model(**encoded_qa_pair) | |
return output[0][0][1] | |
def print_qa(qa_list: List[Mapping[str, str]], show_answers: bool = True) -> None: | |
"""Formats and prints a list of generated questions and answers.""" | |
for i in range(len(qa_list)): | |
# wider space for 2 digit q nums | |
space = " " * int(np.where(i < 9, 3, 4)) | |
print(f"{i + 1}) Q: {qa_list[i]['question']}") | |
answer = qa_list[i]["answer"] | |
# print a list of multiple choice answers | |
if type(answer) is list: | |
if show_answers: | |
print( | |
f"{space}A: 1. {answer[0]['answer']} " | |
f"{np.where(answer[0]['correct'], '(correct)', '')}" | |
) | |
for j in range(1, len(answer)): | |
print( | |
f"{space + ' '}{j + 1}. {answer[j]['answer']} " | |
f"{np.where(answer[j]['correct']==True,'(correct)', '')}" | |
) | |
else: | |
print(f"{space}A: 1. {answer[0]['answer']}") | |
for j in range(1, len(answer)): | |
print(f"{space + ' '}{j + 1}. {answer[j]['answer']}") | |
print("") | |
# print full sentence answers | |
else: | |
if show_answers: | |
print(f"{space}A: {answer}\n") | |