Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +123 -0
- questiongenerator.py +429 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Mon Dec 25 18:18:27 2023
|
4 |
+
|
5 |
+
@author: alish
|
6 |
+
"""
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
import fitz # PyMuPDF
|
10 |
+
import questiongenerator as qs
|
11 |
+
import random
|
12 |
+
|
13 |
+
from questiongenerator import QuestionGenerator
|
14 |
+
qg = QuestionGenerator()
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
def Extract_QA(qlist):
|
19 |
+
i=0
|
20 |
+
question_i= qlist[i]['question']
|
21 |
+
Choices_ans= []
|
22 |
+
Choice_is_correct=[]
|
23 |
+
for j in range(4):
|
24 |
+
Choices_ans= Choices_ans+ [qlist[i]['answer'][j]['answer']]
|
25 |
+
Choice_is_correct= Choice_is_correct+ [qlist[i]['answer'][j]['correct']]
|
26 |
+
|
27 |
+
Q=f"""
|
28 |
+
Q: {question_i}
|
29 |
+
A. {Choices_ans[0]}
|
30 |
+
B. {Choices_ans[1]}
|
31 |
+
C. {Choices_ans[2]}
|
32 |
+
D. {Choices_ans[3]}
|
33 |
+
"""
|
34 |
+
xs=['A','B','C','D']
|
35 |
+
result = [x for x, y in zip(xs, Choice_is_correct) if y ]
|
36 |
+
A= f"""
|
37 |
+
The rigth answer is: {result[0]}
|
38 |
+
"""
|
39 |
+
return (Q,A)
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
def extract_text_from_pdf(pdf_file_path):
|
47 |
+
# Read the PDF file
|
48 |
+
global extracted_text
|
49 |
+
text = []
|
50 |
+
with fitz.open(pdf_file_path) as doc:
|
51 |
+
for page in doc:
|
52 |
+
text.append(page.get_text())
|
53 |
+
extracted_text= '\n'.join(text)
|
54 |
+
extracted_text= get_sub_text(extracted_text)
|
55 |
+
|
56 |
+
return ("The pdf is uploaded Successfully from:"+ str(pdf_file_path))
|
57 |
+
|
58 |
+
qg = qs.QuestionGenerator()
|
59 |
+
|
60 |
+
def get_sub_text(TXT):
|
61 |
+
sub_texts= qg._split_into_segments(TXT)
|
62 |
+
if isinstance(sub_texts, list):
|
63 |
+
return sub_texts
|
64 |
+
else:
|
65 |
+
return [sub_texts]
|
66 |
+
|
67 |
+
def pick_One_txt(sub_texts):
|
68 |
+
global selected_extracted_text
|
69 |
+
N= len(sub_texts)
|
70 |
+
if N==1:
|
71 |
+
selected_extracted_text= sub_texts[0]
|
72 |
+
return(selected_extracted_text)
|
73 |
+
# Generate a random number between low and high
|
74 |
+
random_number = random.uniform(0, N)
|
75 |
+
# Pick the integer part of the random number
|
76 |
+
random_number = int(random_number)
|
77 |
+
selected_extracted_text= sub_texts[random_number]
|
78 |
+
|
79 |
+
return(selected_extracted_text)
|
80 |
+
|
81 |
+
|
82 |
+
def pipeline():
|
83 |
+
global Q,A
|
84 |
+
text= selected_extracted_text
|
85 |
+
qlist= qg.generate(text, num_questions=1, answer_style="multiple_choice")
|
86 |
+
Q,A= Extract_QA(qlist)
|
87 |
+
A= A + '\n'+text
|
88 |
+
return (Q,A)
|
89 |
+
|
90 |
+
def ReurnAnswer():
|
91 |
+
return A
|
92 |
+
|
93 |
+
def GetQuestion():
|
94 |
+
pick_One_txt(extracted_text)
|
95 |
+
Q,A=pipeline()
|
96 |
+
return Q
|
97 |
+
|
98 |
+
with gr.Blocks() as demo:
|
99 |
+
|
100 |
+
with gr.Row():
|
101 |
+
#input_file=gr.File(type="filepath", label="Upload PDF Document")
|
102 |
+
input_file=gr.UploadButton(label='Select a file!', file_types=[".pdf"])
|
103 |
+
#upload_btn = gr.Button(value="Upload File")
|
104 |
+
#txt= extract_text_from_pdf(input_file)
|
105 |
+
with gr.Row():
|
106 |
+
with gr.Column():
|
107 |
+
upload_btn = gr.Button(value="Upload the pdf File.")
|
108 |
+
Gen_Question = gr.Button(value="Show the Question")
|
109 |
+
Gen_Answer = gr.Button(value="Show the Answer")
|
110 |
+
|
111 |
+
with gr.Column():
|
112 |
+
file_stat= gr.Textbox(label="File Status")
|
113 |
+
question = gr.Textbox(label="Question(s)")
|
114 |
+
Answer = gr.Textbox(label="Answer(s)")
|
115 |
+
|
116 |
+
|
117 |
+
upload_btn.click(extract_text_from_pdf, inputs=input_file, outputs=file_stat, api_name="QuestioGenerator")
|
118 |
+
Gen_Question.click(GetQuestion, inputs=None, outputs=question, api_name="QuestioGenerator")
|
119 |
+
Gen_Answer.click(ReurnAnswer, inputs=None, outputs=Answer, api_name="QuestioGenerator")
|
120 |
+
#examples = gr.Examples(examples=["I went to the supermarket yesterday.", "Helen is a good swimmer."],
|
121 |
+
# inputs=[english])
|
122 |
+
|
123 |
+
demo.launch()
|
questiongenerator.py
ADDED
@@ -0,0 +1,429 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import en_core_web_sm
|
2 |
+
import json
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import re
|
6 |
+
import torch
|
7 |
+
from transformers import (
|
8 |
+
AutoTokenizer,
|
9 |
+
AutoModelForSeq2SeqLM,
|
10 |
+
AutoModelForSequenceClassification,
|
11 |
+
)
|
12 |
+
from typing import Any, List, Mapping, Tuple
|
13 |
+
|
14 |
+
|
15 |
+
class QuestionGenerator:
|
16 |
+
"""A transformer-based NLP system for generating reading comprehension-style questions from
|
17 |
+
texts. It can generate full sentence questions, multiple choice questions, or a mix of the
|
18 |
+
two styles.
|
19 |
+
|
20 |
+
To filter out low quality questions, questions are assigned a score and ranked once they have
|
21 |
+
been generated. Only the top k questions will be returned. This behaviour can be turned off
|
22 |
+
by setting use_evaluator=False.
|
23 |
+
"""
|
24 |
+
|
25 |
+
def __init__(self) -> None:
|
26 |
+
|
27 |
+
QG_PRETRAINED = "iarfmoose/t5-base-question-generator"
|
28 |
+
self.ANSWER_TOKEN = "<answer>"
|
29 |
+
self.CONTEXT_TOKEN = "<context>"
|
30 |
+
self.SEQ_LENGTH = 512
|
31 |
+
|
32 |
+
self.device = torch.device(
|
33 |
+
"cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
|
35 |
+
self.qg_tokenizer = AutoTokenizer.from_pretrained(
|
36 |
+
QG_PRETRAINED, use_fast=False)
|
37 |
+
self.qg_model = AutoModelForSeq2SeqLM.from_pretrained(QG_PRETRAINED)
|
38 |
+
self.qg_model.to(self.device)
|
39 |
+
self.qg_model.eval()
|
40 |
+
|
41 |
+
self.qa_evaluator = QAEvaluator()
|
42 |
+
|
43 |
+
def generate(
|
44 |
+
self,
|
45 |
+
article: str,
|
46 |
+
use_evaluator: bool = True,
|
47 |
+
num_questions: bool = None,
|
48 |
+
answer_style: str = "all"
|
49 |
+
) -> List:
|
50 |
+
"""Takes an article and generates a set of question and answer pairs. If use_evaluator
|
51 |
+
is True then QA pairs will be ranked and filtered based on their quality. answer_style
|
52 |
+
should selected from ["all", "sentences", "multiple_choice"].
|
53 |
+
"""
|
54 |
+
|
55 |
+
print("Generating questions...\n")
|
56 |
+
|
57 |
+
qg_inputs, qg_answers = self.generate_qg_inputs(article, answer_style)
|
58 |
+
generated_questions = self.generate_questions_from_inputs(qg_inputs)
|
59 |
+
|
60 |
+
message = "{} questions doesn't match {} answers".format(
|
61 |
+
len(generated_questions), len(qg_answers)
|
62 |
+
)
|
63 |
+
assert len(generated_questions) == len(qg_answers), message
|
64 |
+
|
65 |
+
if use_evaluator:
|
66 |
+
print("Evaluating QA pairs...\n")
|
67 |
+
encoded_qa_pairs = self.qa_evaluator.encode_qa_pairs(
|
68 |
+
generated_questions, qg_answers
|
69 |
+
)
|
70 |
+
scores = self.qa_evaluator.get_scores(encoded_qa_pairs)
|
71 |
+
|
72 |
+
if num_questions:
|
73 |
+
qa_list = self._get_ranked_qa_pairs(
|
74 |
+
generated_questions, qg_answers, scores, num_questions
|
75 |
+
)
|
76 |
+
else:
|
77 |
+
qa_list = self._get_ranked_qa_pairs(
|
78 |
+
generated_questions, qg_answers, scores
|
79 |
+
)
|
80 |
+
|
81 |
+
else:
|
82 |
+
print("Skipping evaluation step.\n")
|
83 |
+
qa_list = self._get_all_qa_pairs(generated_questions, qg_answers)
|
84 |
+
|
85 |
+
return qa_list
|
86 |
+
|
87 |
+
def generate_qg_inputs(self, text: str, answer_style: str) -> Tuple[List[str], List[str]]:
|
88 |
+
"""Given a text, returns a list of model inputs and a list of corresponding answers.
|
89 |
+
Model inputs take the form "answer_token <answer text> context_token <context text>" where
|
90 |
+
the answer is a string extracted from the text, and the context is the wider text surrounding
|
91 |
+
the context.
|
92 |
+
"""
|
93 |
+
|
94 |
+
VALID_ANSWER_STYLES = ["all", "sentences", "multiple_choice"]
|
95 |
+
|
96 |
+
if answer_style not in VALID_ANSWER_STYLES:
|
97 |
+
raise ValueError(
|
98 |
+
"Invalid answer style {}. Please choose from {}".format(
|
99 |
+
answer_style, VALID_ANSWER_STYLES
|
100 |
+
)
|
101 |
+
)
|
102 |
+
|
103 |
+
inputs = []
|
104 |
+
answers = []
|
105 |
+
|
106 |
+
if answer_style == "sentences" or answer_style == "all":
|
107 |
+
segments = self._split_into_segments(text)
|
108 |
+
|
109 |
+
for segment in segments:
|
110 |
+
sentences = self._split_text(segment)
|
111 |
+
prepped_inputs, prepped_answers = self._prepare_qg_inputs(
|
112 |
+
sentences, segment
|
113 |
+
)
|
114 |
+
inputs.extend(prepped_inputs)
|
115 |
+
answers.extend(prepped_answers)
|
116 |
+
|
117 |
+
if answer_style == "multiple_choice" or answer_style == "all":
|
118 |
+
sentences = self._split_text(text)
|
119 |
+
prepped_inputs, prepped_answers = self._prepare_qg_inputs_MC(
|
120 |
+
sentences
|
121 |
+
)
|
122 |
+
inputs.extend(prepped_inputs)
|
123 |
+
answers.extend(prepped_answers)
|
124 |
+
|
125 |
+
return inputs, answers
|
126 |
+
|
127 |
+
def generate_questions_from_inputs(self, qg_inputs: List) -> List[str]:
|
128 |
+
"""Given a list of concatenated answers and contexts, with the form:
|
129 |
+
"answer_token <answer text> context_token <context text>", generates a list of
|
130 |
+
questions.
|
131 |
+
"""
|
132 |
+
generated_questions = []
|
133 |
+
|
134 |
+
for qg_input in qg_inputs:
|
135 |
+
question = self._generate_question(qg_input)
|
136 |
+
generated_questions.append(question)
|
137 |
+
|
138 |
+
return generated_questions
|
139 |
+
|
140 |
+
def _split_text(self, text: str) -> List[str]:
|
141 |
+
"""Splits the text into sentences, and attempts to split or truncate long sentences."""
|
142 |
+
MAX_SENTENCE_LEN = 128
|
143 |
+
sentences = re.findall(".*?[.!\?]", text)
|
144 |
+
cut_sentences = []
|
145 |
+
|
146 |
+
for sentence in sentences:
|
147 |
+
if len(sentence) > MAX_SENTENCE_LEN:
|
148 |
+
cut_sentences.extend(re.split("[,;:)]", sentence))
|
149 |
+
|
150 |
+
# remove useless post-quote sentence fragments
|
151 |
+
cut_sentences = [s for s in sentences if len(s.split(" ")) > 5]
|
152 |
+
sentences = sentences + cut_sentences
|
153 |
+
|
154 |
+
return list(set([s.strip(" ") for s in sentences]))
|
155 |
+
|
156 |
+
def _split_into_segments(self, text: str) -> List[str]:
|
157 |
+
"""Splits a long text into segments short enough to be input into the transformer network.
|
158 |
+
Segments are used as context for question generation.
|
159 |
+
"""
|
160 |
+
MAX_TOKENS = 490
|
161 |
+
paragraphs = text.split("\n")
|
162 |
+
tokenized_paragraphs = [
|
163 |
+
self.qg_tokenizer(p)["input_ids"] for p in paragraphs if len(p) > 0
|
164 |
+
]
|
165 |
+
segments = []
|
166 |
+
|
167 |
+
while len(tokenized_paragraphs) > 0:
|
168 |
+
segment = []
|
169 |
+
|
170 |
+
while len(segment) < MAX_TOKENS and len(tokenized_paragraphs) > 0:
|
171 |
+
paragraph = tokenized_paragraphs.pop(0)
|
172 |
+
segment.extend(paragraph)
|
173 |
+
segments.append(segment)
|
174 |
+
|
175 |
+
return [self.qg_tokenizer.decode(s, skip_special_tokens=True) for s in segments]
|
176 |
+
|
177 |
+
def _prepare_qg_inputs(
|
178 |
+
self,
|
179 |
+
sentences: List[str],
|
180 |
+
text: str
|
181 |
+
) -> Tuple[List[str], List[str]]:
|
182 |
+
"""Uses sentences as answers and the text as context. Returns a tuple of (model inputs, answers).
|
183 |
+
Model inputs are "answer_token <answer text> context_token <context text>"
|
184 |
+
"""
|
185 |
+
inputs = []
|
186 |
+
answers = []
|
187 |
+
|
188 |
+
for sentence in sentences:
|
189 |
+
qg_input = f"{self.ANSWER_TOKEN} {sentence} {self.CONTEXT_TOKEN} {text}"
|
190 |
+
inputs.append(qg_input)
|
191 |
+
answers.append(sentence)
|
192 |
+
|
193 |
+
return inputs, answers
|
194 |
+
|
195 |
+
def _prepare_qg_inputs_MC(self, sentences: List[str]) -> Tuple[List[str], List[str]]:
|
196 |
+
"""Performs NER on the text, and uses extracted entities are candidate answers for multiple-choice
|
197 |
+
questions. Sentences are used as context, and entities as answers. Returns a tuple of (model inputs, answers).
|
198 |
+
Model inputs are "answer_token <answer text> context_token <context text>"
|
199 |
+
"""
|
200 |
+
spacy_nlp = en_core_web_sm.load()
|
201 |
+
docs = list(spacy_nlp.pipe(sentences, disable=["parser"]))
|
202 |
+
inputs_from_text = []
|
203 |
+
answers_from_text = []
|
204 |
+
|
205 |
+
for doc, sentence in zip(docs, sentences):
|
206 |
+
entities = doc.ents
|
207 |
+
if entities:
|
208 |
+
|
209 |
+
for entity in entities:
|
210 |
+
qg_input = f"{self.ANSWER_TOKEN} {entity} {self.CONTEXT_TOKEN} {sentence}"
|
211 |
+
answers = self._get_MC_answers(entity, docs)
|
212 |
+
inputs_from_text.append(qg_input)
|
213 |
+
answers_from_text.append(answers)
|
214 |
+
|
215 |
+
return inputs_from_text, answers_from_text
|
216 |
+
|
217 |
+
def _get_MC_answers(self, correct_answer: Any, docs: Any) -> List[Mapping[str, Any]]:
|
218 |
+
"""Finds a set of alternative answers for a multiple-choice question. Will attempt to find
|
219 |
+
alternatives of the same entity type as correct_answer if possible.
|
220 |
+
"""
|
221 |
+
entities = []
|
222 |
+
|
223 |
+
for doc in docs:
|
224 |
+
entities.extend([{"text": e.text, "label_": e.label_}
|
225 |
+
for e in doc.ents])
|
226 |
+
|
227 |
+
# remove duplicate elements
|
228 |
+
entities_json = [json.dumps(kv) for kv in entities]
|
229 |
+
pool = set(entities_json)
|
230 |
+
num_choices = (
|
231 |
+
min(4, len(pool)) - 1
|
232 |
+
) # -1 because we already have the correct answer
|
233 |
+
|
234 |
+
# add the correct answer
|
235 |
+
final_choices = []
|
236 |
+
correct_label = correct_answer.label_
|
237 |
+
final_choices.append({"answer": correct_answer.text, "correct": True})
|
238 |
+
pool.remove(
|
239 |
+
json.dumps({"text": correct_answer.text,
|
240 |
+
"label_": correct_answer.label_})
|
241 |
+
)
|
242 |
+
|
243 |
+
# find answers with the same NER label
|
244 |
+
matches = [e for e in pool if correct_label in e]
|
245 |
+
|
246 |
+
# if we don't have enough then add some other random answers
|
247 |
+
if len(matches) < num_choices:
|
248 |
+
choices = matches
|
249 |
+
pool = pool.difference(set(choices))
|
250 |
+
choices.extend(random.sample(pool, num_choices - len(choices)))
|
251 |
+
else:
|
252 |
+
choices = random.sample(matches, num_choices)
|
253 |
+
|
254 |
+
choices = [json.loads(s) for s in choices]
|
255 |
+
|
256 |
+
for choice in choices:
|
257 |
+
final_choices.append({"answer": choice["text"], "correct": False})
|
258 |
+
|
259 |
+
random.shuffle(final_choices)
|
260 |
+
return final_choices
|
261 |
+
|
262 |
+
@torch.no_grad()
|
263 |
+
def _generate_question(self, qg_input: str) -> str:
|
264 |
+
"""Takes qg_input which is the concatenated answer and context, and uses it to generate
|
265 |
+
a question sentence. The generated question is decoded and then returned.
|
266 |
+
"""
|
267 |
+
encoded_input = self._encode_qg_input(qg_input)
|
268 |
+
output = self.qg_model.generate(input_ids=encoded_input["input_ids"])
|
269 |
+
question = self.qg_tokenizer.decode(
|
270 |
+
output[0],
|
271 |
+
skip_special_tokens=True
|
272 |
+
)
|
273 |
+
return question
|
274 |
+
|
275 |
+
def _encode_qg_input(self, qg_input: str) -> torch.tensor:
|
276 |
+
"""Tokenizes a string and returns a tensor of input ids corresponding to indices of tokens in
|
277 |
+
the vocab.
|
278 |
+
"""
|
279 |
+
return self.qg_tokenizer(
|
280 |
+
qg_input,
|
281 |
+
padding='max_length',
|
282 |
+
max_length=self.SEQ_LENGTH,
|
283 |
+
truncation=True,
|
284 |
+
return_tensors="pt",
|
285 |
+
).to(self.device)
|
286 |
+
|
287 |
+
def _get_ranked_qa_pairs(
|
288 |
+
self, generated_questions: List[str], qg_answers: List[str], scores, num_questions: int = 10
|
289 |
+
) -> List[Mapping[str, str]]:
|
290 |
+
"""Ranks generated questions according to scores, and returns the top num_questions examples.
|
291 |
+
"""
|
292 |
+
if num_questions > len(scores):
|
293 |
+
num_questions = len(scores)
|
294 |
+
print((
|
295 |
+
f"\nWas only able to generate {num_questions} questions.",
|
296 |
+
"For more questions, please input a longer text.")
|
297 |
+
)
|
298 |
+
|
299 |
+
qa_list = []
|
300 |
+
|
301 |
+
for i in range(num_questions):
|
302 |
+
index = scores[i]
|
303 |
+
qa = {
|
304 |
+
"question": generated_questions[index].split("?")[0] + "?",
|
305 |
+
"answer": qg_answers[index]
|
306 |
+
}
|
307 |
+
qa_list.append(qa)
|
308 |
+
|
309 |
+
return qa_list
|
310 |
+
|
311 |
+
def _get_all_qa_pairs(self, generated_questions: List[str], qg_answers: List[str]):
|
312 |
+
"""Formats question and answer pairs without ranking or filtering."""
|
313 |
+
qa_list = []
|
314 |
+
|
315 |
+
for question, answer in zip(generated_questions, qg_answers):
|
316 |
+
qa = {
|
317 |
+
"question": question.split("?")[0] + "?",
|
318 |
+
"answer": answer
|
319 |
+
}
|
320 |
+
qa_list.append(qa)
|
321 |
+
|
322 |
+
return qa_list
|
323 |
+
|
324 |
+
|
325 |
+
class QAEvaluator:
|
326 |
+
"""Wrapper for a transformer model which evaluates the quality of question-answer pairs.
|
327 |
+
Given a QA pair, the model will generate a score. Scores can be used to rank and filter
|
328 |
+
QA pairs.
|
329 |
+
"""
|
330 |
+
|
331 |
+
def __init__(self) -> None:
|
332 |
+
|
333 |
+
QAE_PRETRAINED = "iarfmoose/bert-base-cased-qa-evaluator"
|
334 |
+
self.SEQ_LENGTH = 512
|
335 |
+
|
336 |
+
self.device = torch.device(
|
337 |
+
"cuda" if torch.cuda.is_available() else "cpu")
|
338 |
+
|
339 |
+
self.qae_tokenizer = AutoTokenizer.from_pretrained(QAE_PRETRAINED)
|
340 |
+
self.qae_model = AutoModelForSequenceClassification.from_pretrained(
|
341 |
+
QAE_PRETRAINED
|
342 |
+
)
|
343 |
+
self.qae_model.to(self.device)
|
344 |
+
self.qae_model.eval()
|
345 |
+
|
346 |
+
def encode_qa_pairs(self, questions: List[str], answers: List[str]) -> List[torch.tensor]:
|
347 |
+
"""Takes a list of questions and a list of answers and encodes them as a list of tensors."""
|
348 |
+
encoded_pairs = []
|
349 |
+
|
350 |
+
for question, answer in zip(questions, answers):
|
351 |
+
encoded_qa = self._encode_qa(question, answer)
|
352 |
+
encoded_pairs.append(encoded_qa.to(self.device))
|
353 |
+
|
354 |
+
return encoded_pairs
|
355 |
+
|
356 |
+
def get_scores(self, encoded_qa_pairs: List[torch.tensor]) -> List[float]:
|
357 |
+
"""Generates scores for a list of encoded QA pairs."""
|
358 |
+
scores = {}
|
359 |
+
|
360 |
+
for i in range(len(encoded_qa_pairs)):
|
361 |
+
scores[i] = self._evaluate_qa(encoded_qa_pairs[i])
|
362 |
+
|
363 |
+
return [
|
364 |
+
k for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True)
|
365 |
+
]
|
366 |
+
|
367 |
+
def _encode_qa(self, question: str, answer: str) -> torch.tensor:
|
368 |
+
"""Concatenates a question and answer, and then tokenizes them. Returns a tensor of
|
369 |
+
input ids corresponding to indices in the vocab.
|
370 |
+
"""
|
371 |
+
if type(answer) is list:
|
372 |
+
for a in answer:
|
373 |
+
if a["correct"]:
|
374 |
+
correct_answer = a["answer"]
|
375 |
+
else:
|
376 |
+
correct_answer = answer
|
377 |
+
|
378 |
+
return self.qae_tokenizer(
|
379 |
+
text=question,
|
380 |
+
text_pair=correct_answer,
|
381 |
+
padding="max_length",
|
382 |
+
max_length=self.SEQ_LENGTH,
|
383 |
+
truncation=True,
|
384 |
+
return_tensors="pt",
|
385 |
+
)
|
386 |
+
|
387 |
+
@torch.no_grad()
|
388 |
+
def _evaluate_qa(self, encoded_qa_pair: torch.tensor) -> float:
|
389 |
+
"""Takes an encoded QA pair and returns a score."""
|
390 |
+
output = self.qae_model(**encoded_qa_pair)
|
391 |
+
return output[0][0][1]
|
392 |
+
|
393 |
+
|
394 |
+
def print_qa(qa_list: List[Mapping[str, str]], show_answers: bool = True) -> None:
|
395 |
+
"""Formats and prints a list of generated questions and answers."""
|
396 |
+
|
397 |
+
for i in range(len(qa_list)):
|
398 |
+
# wider space for 2 digit q nums
|
399 |
+
space = " " * int(np.where(i < 9, 3, 4))
|
400 |
+
|
401 |
+
print(f"{i + 1}) Q: {qa_list[i]['question']}")
|
402 |
+
|
403 |
+
answer = qa_list[i]["answer"]
|
404 |
+
|
405 |
+
# print a list of multiple choice answers
|
406 |
+
if type(answer) is list:
|
407 |
+
|
408 |
+
if show_answers:
|
409 |
+
print(
|
410 |
+
f"{space}A: 1. {answer[0]['answer']} "
|
411 |
+
f"{np.where(answer[0]['correct'], '(correct)', '')}"
|
412 |
+
)
|
413 |
+
for j in range(1, len(answer)):
|
414 |
+
print(
|
415 |
+
f"{space + ' '}{j + 1}. {answer[j]['answer']} "
|
416 |
+
f"{np.where(answer[j]['correct']==True,'(correct)', '')}"
|
417 |
+
)
|
418 |
+
|
419 |
+
else:
|
420 |
+
print(f"{space}A: 1. {answer[0]['answer']}")
|
421 |
+
for j in range(1, len(answer)):
|
422 |
+
print(f"{space + ' '}{j + 1}. {answer[j]['answer']}")
|
423 |
+
|
424 |
+
print("")
|
425 |
+
|
426 |
+
# print full sentence answers
|
427 |
+
else:
|
428 |
+
if show_answers:
|
429 |
+
print(f"{space}A: {answer}\n")
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets==1.16.1
|
2 |
+
en_core_web_sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.3.1/en_core_web_sm-2.3.1.tar.gz
|
3 |
+
numpy==1.22.0
|
4 |
+
sentencepiece==0.1.96
|
5 |
+
spacy
|
6 |
+
tokenizers==0.10.3
|
7 |
+
torch==1.7.1
|
8 |
+
transformers==4.12.5
|
9 |
+
gradio
|
10 |
+
pymupdf
|