OMG / inference /enterprise /stream_management /manager /inference_pipeline_manager.py
Fucius's picture
Upload 422 files
df6c67d verified
import os
import signal
from dataclasses import asdict
from multiprocessing import Process, Queue
from types import FrameType
from typing import Callable, Optional, Tuple
from inference.core import logger
from inference.core.exceptions import (
MissingApiKeyError,
RoboflowAPINotAuthorizedError,
RoboflowAPINotNotFoundError,
)
from inference.core.interfaces.camera.entities import VideoFrame
from inference.core.interfaces.camera.exceptions import StreamOperationNotAllowedError
from inference.core.interfaces.camera.video_source import (
BufferConsumptionStrategy,
BufferFillingStrategy,
)
from inference.core.interfaces.stream.entities import ObjectDetectionPrediction
from inference.core.interfaces.stream.inference_pipeline import InferencePipeline
from inference.core.interfaces.stream.sinks import UDPSink
from inference.core.interfaces.stream.watchdog import (
BasePipelineWatchDog,
PipelineWatchDog,
)
from inference.enterprise.stream_management.manager.entities import (
STATUS_KEY,
TYPE_KEY,
CommandType,
ErrorType,
OperationStatus,
)
from inference.enterprise.stream_management.manager.serialisation import describe_error
def ignore_signal(signal_number: int, frame: FrameType) -> None:
pid = os.getpid()
logger.info(
f"Ignoring signal {signal_number} in InferencePipelineManager in process:{pid}"
)
class InferencePipelineManager(Process):
@classmethod
def init(
cls, command_queue: Queue, responses_queue: Queue
) -> "InferencePipelineManager":
return cls(command_queue=command_queue, responses_queue=responses_queue)
def __init__(self, command_queue: Queue, responses_queue: Queue):
super().__init__()
self._command_queue = command_queue
self._responses_queue = responses_queue
self._inference_pipeline: Optional[InferencePipeline] = None
self._watchdog: Optional[PipelineWatchDog] = None
self._stop = False
def run(self) -> None:
signal.signal(signal.SIGINT, ignore_signal)
signal.signal(signal.SIGTERM, self._handle_termination_signal)
while not self._stop:
command: Optional[Tuple[str, dict]] = self._command_queue.get()
if command is None:
break
request_id, payload = command
self._handle_command(request_id=request_id, payload=payload)
def _handle_command(self, request_id: str, payload: dict) -> None:
try:
logger.info(f"Processing request={request_id}...")
command_type = payload[TYPE_KEY]
if command_type is CommandType.INIT:
return self._initialise_pipeline(request_id=request_id, payload=payload)
if command_type is CommandType.TERMINATE:
return self._terminate_pipeline(request_id=request_id)
if command_type is CommandType.MUTE:
return self._mute_pipeline(request_id=request_id)
if command_type is CommandType.RESUME:
return self._resume_pipeline(request_id=request_id)
if command_type is CommandType.STATUS:
return self._get_pipeline_status(request_id=request_id)
raise NotImplementedError(
f"Command type `{command_type}` cannot be handled"
)
except (KeyError, NotImplementedError) as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.INVALID_PAYLOAD
)
except Exception as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.INTERNAL_ERROR
)
def _initialise_pipeline(self, request_id: str, payload: dict) -> None:
try:
watchdog = BasePipelineWatchDog()
sink = assembly_pipeline_sink(sink_config=payload["sink_configuration"])
source_buffer_filling_strategy, source_buffer_consumption_strategy = (
None,
None,
)
if "source_buffer_filling_strategy" in payload:
source_buffer_filling_strategy = BufferFillingStrategy(
payload["source_buffer_filling_strategy"].upper()
)
if "source_buffer_consumption_strategy" in payload:
source_buffer_consumption_strategy = BufferConsumptionStrategy(
payload["source_buffer_consumption_strategy"].upper()
)
model_configuration = payload["model_configuration"]
if model_configuration["type"] != "object-detection":
raise NotImplementedError("Only object-detection models are supported")
self._inference_pipeline = InferencePipeline.init(
model_id=payload["model_id"],
video_reference=payload["video_reference"],
on_prediction=sink,
api_key=payload.get("api_key"),
max_fps=payload.get("max_fps"),
watchdog=watchdog,
source_buffer_filling_strategy=source_buffer_filling_strategy,
source_buffer_consumption_strategy=source_buffer_consumption_strategy,
class_agnostic_nms=model_configuration.get("class_agnostic_nms"),
confidence=model_configuration.get("confidence"),
iou_threshold=model_configuration.get("iou_threshold"),
max_candidates=model_configuration.get("max_candidates"),
max_detections=model_configuration.get("max_detections"),
active_learning_enabled=payload.get("active_learning_enabled"),
)
self._watchdog = watchdog
self._inference_pipeline.start(use_main_thread=False)
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
logger.info(f"Pipeline initialised. request_id={request_id}...")
except (MissingApiKeyError, KeyError, NotImplementedError) as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.INVALID_PAYLOAD
)
except RoboflowAPINotAuthorizedError as error:
self._handle_error(
request_id=request_id,
error=error,
error_type=ErrorType.AUTHORISATION_ERROR,
)
except RoboflowAPINotNotFoundError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.NOT_FOUND
)
def _terminate_pipeline(self, request_id: str) -> None:
if self._inference_pipeline is None:
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
self._stop = True
return None
try:
self._execute_termination()
logger.info(f"Pipeline terminated. request_id={request_id}...")
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
except StreamOperationNotAllowedError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.OPERATION_ERROR
)
def _handle_termination_signal(self, signal_number: int, frame: FrameType) -> None:
try:
pid = os.getpid()
logger.info(f"Terminating pipeline in process:{pid}...")
if self._inference_pipeline is not None:
self._execute_termination()
self._command_queue.put(None)
logger.info(f"Termination successful in process:{pid}...")
except Exception as error:
logger.warning(f"Could not terminate pipeline gracefully. Error: {error}")
def _execute_termination(self) -> None:
self._inference_pipeline.terminate()
self._inference_pipeline.join()
self._stop = True
def _mute_pipeline(self, request_id: str) -> None:
if self._inference_pipeline is None:
return self._handle_error(
request_id=request_id, error_type=ErrorType.OPERATION_ERROR
)
try:
self._inference_pipeline.mute_stream()
logger.info(f"Pipeline muted. request_id={request_id}...")
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
except StreamOperationNotAllowedError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.OPERATION_ERROR
)
def _resume_pipeline(self, request_id: str) -> None:
if self._inference_pipeline is None:
return self._handle_error(
request_id=request_id, error_type=ErrorType.OPERATION_ERROR
)
try:
self._inference_pipeline.resume_stream()
logger.info(f"Pipeline resumed. request_id={request_id}...")
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
except StreamOperationNotAllowedError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.OPERATION_ERROR
)
def _get_pipeline_status(self, request_id: str) -> None:
if self._watchdog is None:
return self._handle_error(
request_id=request_id, error_type=ErrorType.OPERATION_ERROR
)
try:
report = self._watchdog.get_report()
if report is None:
return self._handle_error(
request_id=request_id, error_type=ErrorType.OPERATION_ERROR
)
response_payload = {
STATUS_KEY: OperationStatus.SUCCESS,
"report": asdict(report),
}
self._responses_queue.put((request_id, response_payload))
logger.info(f"Pipeline status returned. request_id={request_id}...")
except StreamOperationNotAllowedError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.OPERATION_ERROR
)
def _handle_error(
self,
request_id: str,
error: Optional[Exception] = None,
error_type: ErrorType = ErrorType.INTERNAL_ERROR,
):
logger.error(
f"Could not handle Command. request_id={request_id}, error={error}, error_type={error_type}"
)
response_payload = describe_error(error, error_type=error_type)
self._responses_queue.put((request_id, response_payload))
def assembly_pipeline_sink(
sink_config: dict,
) -> Callable[[ObjectDetectionPrediction, VideoFrame], None]:
if sink_config["type"] != "udp_sink":
raise NotImplementedError("Only `udp_socket` sink type is supported")
sink = UDPSink.init(ip_address=sink_config["host"], port=sink_config["port"])
return sink.send_predictions