Spaces:
Runtime error
Runtime error
File size: 11,131 Bytes
df6c67d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
import signal
from dataclasses import asdict
from multiprocessing import Process, Queue
from types import FrameType
from typing import Callable, Optional, Tuple
from inference.core import logger
from inference.core.exceptions import (
MissingApiKeyError,
RoboflowAPINotAuthorizedError,
RoboflowAPINotNotFoundError,
)
from inference.core.interfaces.camera.entities import VideoFrame
from inference.core.interfaces.camera.exceptions import StreamOperationNotAllowedError
from inference.core.interfaces.camera.video_source import (
BufferConsumptionStrategy,
BufferFillingStrategy,
)
from inference.core.interfaces.stream.entities import ObjectDetectionPrediction
from inference.core.interfaces.stream.inference_pipeline import InferencePipeline
from inference.core.interfaces.stream.sinks import UDPSink
from inference.core.interfaces.stream.watchdog import (
BasePipelineWatchDog,
PipelineWatchDog,
)
from inference.enterprise.stream_management.manager.entities import (
STATUS_KEY,
TYPE_KEY,
CommandType,
ErrorType,
OperationStatus,
)
from inference.enterprise.stream_management.manager.serialisation import describe_error
def ignore_signal(signal_number: int, frame: FrameType) -> None:
pid = os.getpid()
logger.info(
f"Ignoring signal {signal_number} in InferencePipelineManager in process:{pid}"
)
class InferencePipelineManager(Process):
@classmethod
def init(
cls, command_queue: Queue, responses_queue: Queue
) -> "InferencePipelineManager":
return cls(command_queue=command_queue, responses_queue=responses_queue)
def __init__(self, command_queue: Queue, responses_queue: Queue):
super().__init__()
self._command_queue = command_queue
self._responses_queue = responses_queue
self._inference_pipeline: Optional[InferencePipeline] = None
self._watchdog: Optional[PipelineWatchDog] = None
self._stop = False
def run(self) -> None:
signal.signal(signal.SIGINT, ignore_signal)
signal.signal(signal.SIGTERM, self._handle_termination_signal)
while not self._stop:
command: Optional[Tuple[str, dict]] = self._command_queue.get()
if command is None:
break
request_id, payload = command
self._handle_command(request_id=request_id, payload=payload)
def _handle_command(self, request_id: str, payload: dict) -> None:
try:
logger.info(f"Processing request={request_id}...")
command_type = payload[TYPE_KEY]
if command_type is CommandType.INIT:
return self._initialise_pipeline(request_id=request_id, payload=payload)
if command_type is CommandType.TERMINATE:
return self._terminate_pipeline(request_id=request_id)
if command_type is CommandType.MUTE:
return self._mute_pipeline(request_id=request_id)
if command_type is CommandType.RESUME:
return self._resume_pipeline(request_id=request_id)
if command_type is CommandType.STATUS:
return self._get_pipeline_status(request_id=request_id)
raise NotImplementedError(
f"Command type `{command_type}` cannot be handled"
)
except (KeyError, NotImplementedError) as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.INVALID_PAYLOAD
)
except Exception as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.INTERNAL_ERROR
)
def _initialise_pipeline(self, request_id: str, payload: dict) -> None:
try:
watchdog = BasePipelineWatchDog()
sink = assembly_pipeline_sink(sink_config=payload["sink_configuration"])
source_buffer_filling_strategy, source_buffer_consumption_strategy = (
None,
None,
)
if "source_buffer_filling_strategy" in payload:
source_buffer_filling_strategy = BufferFillingStrategy(
payload["source_buffer_filling_strategy"].upper()
)
if "source_buffer_consumption_strategy" in payload:
source_buffer_consumption_strategy = BufferConsumptionStrategy(
payload["source_buffer_consumption_strategy"].upper()
)
model_configuration = payload["model_configuration"]
if model_configuration["type"] != "object-detection":
raise NotImplementedError("Only object-detection models are supported")
self._inference_pipeline = InferencePipeline.init(
model_id=payload["model_id"],
video_reference=payload["video_reference"],
on_prediction=sink,
api_key=payload.get("api_key"),
max_fps=payload.get("max_fps"),
watchdog=watchdog,
source_buffer_filling_strategy=source_buffer_filling_strategy,
source_buffer_consumption_strategy=source_buffer_consumption_strategy,
class_agnostic_nms=model_configuration.get("class_agnostic_nms"),
confidence=model_configuration.get("confidence"),
iou_threshold=model_configuration.get("iou_threshold"),
max_candidates=model_configuration.get("max_candidates"),
max_detections=model_configuration.get("max_detections"),
active_learning_enabled=payload.get("active_learning_enabled"),
)
self._watchdog = watchdog
self._inference_pipeline.start(use_main_thread=False)
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
logger.info(f"Pipeline initialised. request_id={request_id}...")
except (MissingApiKeyError, KeyError, NotImplementedError) as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.INVALID_PAYLOAD
)
except RoboflowAPINotAuthorizedError as error:
self._handle_error(
request_id=request_id,
error=error,
error_type=ErrorType.AUTHORISATION_ERROR,
)
except RoboflowAPINotNotFoundError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.NOT_FOUND
)
def _terminate_pipeline(self, request_id: str) -> None:
if self._inference_pipeline is None:
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
self._stop = True
return None
try:
self._execute_termination()
logger.info(f"Pipeline terminated. request_id={request_id}...")
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
except StreamOperationNotAllowedError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.OPERATION_ERROR
)
def _handle_termination_signal(self, signal_number: int, frame: FrameType) -> None:
try:
pid = os.getpid()
logger.info(f"Terminating pipeline in process:{pid}...")
if self._inference_pipeline is not None:
self._execute_termination()
self._command_queue.put(None)
logger.info(f"Termination successful in process:{pid}...")
except Exception as error:
logger.warning(f"Could not terminate pipeline gracefully. Error: {error}")
def _execute_termination(self) -> None:
self._inference_pipeline.terminate()
self._inference_pipeline.join()
self._stop = True
def _mute_pipeline(self, request_id: str) -> None:
if self._inference_pipeline is None:
return self._handle_error(
request_id=request_id, error_type=ErrorType.OPERATION_ERROR
)
try:
self._inference_pipeline.mute_stream()
logger.info(f"Pipeline muted. request_id={request_id}...")
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
except StreamOperationNotAllowedError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.OPERATION_ERROR
)
def _resume_pipeline(self, request_id: str) -> None:
if self._inference_pipeline is None:
return self._handle_error(
request_id=request_id, error_type=ErrorType.OPERATION_ERROR
)
try:
self._inference_pipeline.resume_stream()
logger.info(f"Pipeline resumed. request_id={request_id}...")
self._responses_queue.put(
(request_id, {STATUS_KEY: OperationStatus.SUCCESS})
)
except StreamOperationNotAllowedError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.OPERATION_ERROR
)
def _get_pipeline_status(self, request_id: str) -> None:
if self._watchdog is None:
return self._handle_error(
request_id=request_id, error_type=ErrorType.OPERATION_ERROR
)
try:
report = self._watchdog.get_report()
if report is None:
return self._handle_error(
request_id=request_id, error_type=ErrorType.OPERATION_ERROR
)
response_payload = {
STATUS_KEY: OperationStatus.SUCCESS,
"report": asdict(report),
}
self._responses_queue.put((request_id, response_payload))
logger.info(f"Pipeline status returned. request_id={request_id}...")
except StreamOperationNotAllowedError as error:
self._handle_error(
request_id=request_id, error=error, error_type=ErrorType.OPERATION_ERROR
)
def _handle_error(
self,
request_id: str,
error: Optional[Exception] = None,
error_type: ErrorType = ErrorType.INTERNAL_ERROR,
):
logger.error(
f"Could not handle Command. request_id={request_id}, error={error}, error_type={error_type}"
)
response_payload = describe_error(error, error_type=error_type)
self._responses_queue.put((request_id, response_payload))
def assembly_pipeline_sink(
sink_config: dict,
) -> Callable[[ObjectDetectionPrediction, VideoFrame], None]:
if sink_config["type"] != "udp_sink":
raise NotImplementedError("Only `udp_socket` sink type is supported")
sink = UDPSink.init(ip_address=sink_config["host"], port=sink_config["port"])
return sink.send_predictions
|