Fabrice-TIERCELIN's picture
Upload 3 files
aa24895 verified
raw
history blame
13.8 kB
from dataclasses import dataclass
from typing import Optional, Tuple
import numpy as np
import torch
import torch.nn as nn
from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils.torch_utils import randn_tensor
from diffusers.models.attention_processor import SpatialNorm
from .unet_causal_3d_blocks import (
CausalConv3d,
UNetMidBlockCausal3D,
get_down_block3d,
get_up_block3d,
)
@dataclass
class DecoderOutput(BaseOutput):
r"""
Output of decoding method.
Args:
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
The decoded output sample from the last layer of the model.
"""
sample: torch.FloatTensor
class EncoderCausal3D(nn.Module):
r"""
The `EncoderCausal3D` layer of a variational autoencoder that encodes its input into a latent representation.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
double_z: bool = True,
mid_block_add_attention=True,
time_compression_ratio: int = 4,
spatial_compression_ratio: int = 8,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
self.mid_block = None
self.down_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
num_time_downsample_layers = int(np.log2(time_compression_ratio))
if time_compression_ratio == 4:
add_spatial_downsample = bool(i < num_spatial_downsample_layers)
add_time_downsample = bool(
i >= (len(block_out_channels) - 1 - num_time_downsample_layers)
and not is_final_block
)
else:
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
downsample_stride_T = (2,) if add_time_downsample else (1,)
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
down_block = get_down_block3d(
down_block_type,
num_layers=self.layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
add_downsample=bool(add_spatial_downsample or add_time_downsample),
downsample_stride=downsample_stride,
resnet_eps=1e-6,
downsample_padding=0,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=None,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidBlockCausal3D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default",
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=None,
add_attention=mid_block_add_attention,
)
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
conv_out_channels = 2 * out_channels if double_z else out_channels
self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
r"""The forward method of the `EncoderCausal3D` class."""
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions"
sample = self.conv_in(sample)
# down
for down_block in self.down_blocks:
sample = down_block(sample)
# middle
sample = self.mid_block(sample)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class DecoderCausal3D(nn.Module):
r"""
The `DecoderCausal3D` layer of a variational autoencoder that decodes its latent representation into an output sample.
"""
def __init__(
self,
in_channels: int = 3,
out_channels: int = 3,
up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",),
block_out_channels: Tuple[int, ...] = (64,),
layers_per_block: int = 2,
norm_num_groups: int = 32,
act_fn: str = "silu",
norm_type: str = "group", # group, spatial
mid_block_add_attention=True,
time_compression_ratio: int = 4,
spatial_compression_ratio: int = 8,
):
super().__init__()
self.layers_per_block = layers_per_block
self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
self.mid_block = None
self.up_blocks = nn.ModuleList([])
temb_channels = in_channels if norm_type == "spatial" else None
# mid
self.mid_block = UNetMidBlockCausal3D(
in_channels=block_out_channels[-1],
resnet_eps=1e-6,
resnet_act_fn=act_fn,
output_scale_factor=1,
resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
attention_head_dim=block_out_channels[-1],
resnet_groups=norm_num_groups,
temb_channels=temb_channels,
add_attention=mid_block_add_attention,
)
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
num_time_upsample_layers = int(np.log2(time_compression_ratio))
if time_compression_ratio == 4:
add_spatial_upsample = bool(i < num_spatial_upsample_layers)
add_time_upsample = bool(
i >= len(block_out_channels) - 1 - num_time_upsample_layers
and not is_final_block
)
else:
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
up_block = get_up_block3d(
up_block_type,
num_layers=self.layers_per_block + 1,
in_channels=prev_output_channel,
out_channels=output_channel,
prev_output_channel=None,
add_upsample=bool(add_spatial_upsample or add_time_upsample),
upsample_scale_factor=upsample_scale_factor,
resnet_eps=1e-6,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
attention_head_dim=output_channel,
temb_channels=temb_channels,
resnet_time_scale_shift=norm_type,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if norm_type == "spatial":
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
else:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
self.conv_act = nn.SiLU()
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)
self.gradient_checkpointing = False
def forward(
self,
sample: torch.FloatTensor,
latent_embeds: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
r"""The forward method of the `DecoderCausal3D` class."""
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions."
sample = self.conv_in(sample)
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs)
return custom_forward
if is_torch_version(">=", "1.11.0"):
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block),
sample,
latent_embeds,
use_reentrant=False,
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(up_block),
sample,
latent_embeds,
use_reentrant=False,
)
else:
# middle
sample = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block), sample, latent_embeds
)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
else:
# middle
sample = self.mid_block(sample, latent_embeds)
sample = sample.to(upscale_dtype)
# up
for up_block in self.up_blocks:
sample = up_block(sample, latent_embeds)
# post-process
if latent_embeds is None:
sample = self.conv_norm_out(sample)
else:
sample = self.conv_norm_out(sample, latent_embeds)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
return sample
class DiagonalGaussianDistribution(object):
def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
if parameters.ndim == 3:
dim = 2 # (B, L, C)
elif parameters.ndim == 5 or parameters.ndim == 4:
dim = 1 # (B, C, T, H ,W) / (B, C, H, W)
else:
raise NotImplementedError
self.parameters = parameters
self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
self.deterministic = deterministic
self.std = torch.exp(0.5 * self.logvar)
self.var = torch.exp(self.logvar)
if self.deterministic:
self.var = self.std = torch.zeros_like(
self.mean, device=self.parameters.device, dtype=self.parameters.dtype
)
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
# make sure sample is on the same device as the parameters and has same dtype
sample = randn_tensor(
self.mean.shape,
generator=generator,
device=self.parameters.device,
dtype=self.parameters.dtype,
)
x = self.mean + self.std * sample
return x
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
if self.deterministic:
return torch.Tensor([0.0])
else:
reduce_dim = list(range(1, self.mean.ndim))
if other is None:
return 0.5 * torch.sum(
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
dim=reduce_dim,
)
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean, 2) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar,
dim=reduce_dim,
)
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
if self.deterministic:
return torch.Tensor([0.0])
logtwopi = np.log(2.0 * np.pi)
return 0.5 * torch.sum(
logtwopi + self.logvar +
torch.pow(sample - self.mean, 2) / self.var,
dim=dims,
)
def mode(self) -> torch.Tensor:
return self.mean