File size: 13,760 Bytes
aa24895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
from dataclasses import dataclass
from typing import Optional, Tuple

import numpy as np
import torch
import torch.nn as nn

from diffusers.utils import BaseOutput, is_torch_version
from diffusers.utils.torch_utils import randn_tensor
from diffusers.models.attention_processor import SpatialNorm
from .unet_causal_3d_blocks import (
    CausalConv3d,
    UNetMidBlockCausal3D,
    get_down_block3d,
    get_up_block3d,
)


@dataclass
class DecoderOutput(BaseOutput):
    r"""

    Output of decoding method.



    Args:

        sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):

            The decoded output sample from the last layer of the model.

    """

    sample: torch.FloatTensor


class EncoderCausal3D(nn.Module):
    r"""

    The `EncoderCausal3D` layer of a variational autoencoder that encodes its input into a latent representation.

    """

    def __init__(

        self,

        in_channels: int = 3,

        out_channels: int = 3,

        down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",),

        block_out_channels: Tuple[int, ...] = (64,),

        layers_per_block: int = 2,

        norm_num_groups: int = 32,

        act_fn: str = "silu",

        double_z: bool = True,

        mid_block_add_attention=True,

        time_compression_ratio: int = 4,

        spatial_compression_ratio: int = 8,

    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1)
        self.mid_block = None
        self.down_blocks = nn.ModuleList([])

        # down
        output_channel = block_out_channels[0]
        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio))
            num_time_downsample_layers = int(np.log2(time_compression_ratio))

            if time_compression_ratio == 4:
                add_spatial_downsample = bool(i < num_spatial_downsample_layers)
                add_time_downsample = bool(
                    i >= (len(block_out_channels) - 1 - num_time_downsample_layers)
                    and not is_final_block
                )
            else:
                raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")

            downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1)
            downsample_stride_T = (2,) if add_time_downsample else (1,)
            downsample_stride = tuple(downsample_stride_T + downsample_stride_HW)
            down_block = get_down_block3d(
                down_block_type,
                num_layers=self.layers_per_block,
                in_channels=input_channel,
                out_channels=output_channel,
                add_downsample=bool(add_spatial_downsample or add_time_downsample),
                downsample_stride=downsample_stride,
                resnet_eps=1e-6,
                downsample_padding=0,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=None,
            )
            self.down_blocks.append(down_block)

        # mid
        self.mid_block = UNetMidBlockCausal3D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default",
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=None,
            add_attention=mid_block_add_attention,
        )

        # out
        self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()

        conv_out_channels = 2 * out_channels if double_z else out_channels
        self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3)

    def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
        r"""The forward method of the `EncoderCausal3D` class."""
        assert len(sample.shape) == 5, "The input tensor should have 5 dimensions"

        sample = self.conv_in(sample)

        # down
        for down_block in self.down_blocks:
            sample = down_block(sample)

        # middle
        sample = self.mid_block(sample)

        # post-process
        sample = self.conv_norm_out(sample)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


class DecoderCausal3D(nn.Module):
    r"""

    The `DecoderCausal3D` layer of a variational autoencoder that decodes its latent representation into an output sample.

    """

    def __init__(

        self,

        in_channels: int = 3,

        out_channels: int = 3,

        up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",),

        block_out_channels: Tuple[int, ...] = (64,),

        layers_per_block: int = 2,

        norm_num_groups: int = 32,

        act_fn: str = "silu",

        norm_type: str = "group",  # group, spatial

        mid_block_add_attention=True,

        time_compression_ratio: int = 4,

        spatial_compression_ratio: int = 8,

    ):
        super().__init__()
        self.layers_per_block = layers_per_block

        self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1)
        self.mid_block = None
        self.up_blocks = nn.ModuleList([])

        temb_channels = in_channels if norm_type == "spatial" else None

        # mid
        self.mid_block = UNetMidBlockCausal3D(
            in_channels=block_out_channels[-1],
            resnet_eps=1e-6,
            resnet_act_fn=act_fn,
            output_scale_factor=1,
            resnet_time_scale_shift="default" if norm_type == "group" else norm_type,
            attention_head_dim=block_out_channels[-1],
            resnet_groups=norm_num_groups,
            temb_channels=temb_channels,
            add_attention=mid_block_add_attention,
        )

        # up
        reversed_block_out_channels = list(reversed(block_out_channels))
        output_channel = reversed_block_out_channels[0]
        for i, up_block_type in enumerate(up_block_types):
            prev_output_channel = output_channel
            output_channel = reversed_block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1
            num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio))
            num_time_upsample_layers = int(np.log2(time_compression_ratio))

            if time_compression_ratio == 4:
                add_spatial_upsample = bool(i < num_spatial_upsample_layers)
                add_time_upsample = bool(
                    i >= len(block_out_channels) - 1 - num_time_upsample_layers
                    and not is_final_block
                )
            else:
                raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.")

            upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1)
            upsample_scale_factor_T = (2,) if add_time_upsample else (1,)
            upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW)
            up_block = get_up_block3d(
                up_block_type,
                num_layers=self.layers_per_block + 1,
                in_channels=prev_output_channel,
                out_channels=output_channel,
                prev_output_channel=None,
                add_upsample=bool(add_spatial_upsample or add_time_upsample),
                upsample_scale_factor=upsample_scale_factor,
                resnet_eps=1e-6,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                attention_head_dim=output_channel,
                temb_channels=temb_channels,
                resnet_time_scale_shift=norm_type,
            )
            self.up_blocks.append(up_block)
            prev_output_channel = output_channel

        # out
        if norm_type == "spatial":
            self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels)
        else:
            self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6)
        self.conv_act = nn.SiLU()
        self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3)

        self.gradient_checkpointing = False

    def forward(

        self,

        sample: torch.FloatTensor,

        latent_embeds: Optional[torch.FloatTensor] = None,

    ) -> torch.FloatTensor:
        r"""The forward method of the `DecoderCausal3D` class."""
        assert len(sample.shape) == 5, "The input tensor should have 5 dimensions."

        sample = self.conv_in(sample)

        upscale_dtype = next(iter(self.up_blocks.parameters())).dtype
        if self.training and self.gradient_checkpointing:

            def create_custom_forward(module):
                def custom_forward(*inputs):
                    return module(*inputs)

                return custom_forward

            if is_torch_version(">=", "1.11.0"):
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block),
                    sample,
                    latent_embeds,
                    use_reentrant=False,
                )
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(
                        create_custom_forward(up_block),
                        sample,
                        latent_embeds,
                        use_reentrant=False,
                    )
            else:
                # middle
                sample = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(self.mid_block), sample, latent_embeds
                )
                sample = sample.to(upscale_dtype)

                # up
                for up_block in self.up_blocks:
                    sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds)
        else:
            # middle
            sample = self.mid_block(sample, latent_embeds)
            sample = sample.to(upscale_dtype)

            # up
            for up_block in self.up_blocks:
                sample = up_block(sample, latent_embeds)

        # post-process
        if latent_embeds is None:
            sample = self.conv_norm_out(sample)
        else:
            sample = self.conv_norm_out(sample, latent_embeds)
        sample = self.conv_act(sample)
        sample = self.conv_out(sample)

        return sample


class DiagonalGaussianDistribution(object):
    def __init__(self, parameters: torch.Tensor, deterministic: bool = False):
        if parameters.ndim == 3:
            dim = 2  # (B, L, C)
        elif parameters.ndim == 5 or parameters.ndim == 4:
            dim = 1  # (B, C, T, H ,W) / (B, C, H, W)
        else:
            raise NotImplementedError
        self.parameters = parameters
        self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim)
        self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
        self.deterministic = deterministic
        self.std = torch.exp(0.5 * self.logvar)
        self.var = torch.exp(self.logvar)
        if self.deterministic:
            self.var = self.std = torch.zeros_like(
                self.mean, device=self.parameters.device, dtype=self.parameters.dtype
            )

    def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor:
        # make sure sample is on the same device as the parameters and has same dtype
        sample = randn_tensor(
            self.mean.shape,
            generator=generator,
            device=self.parameters.device,
            dtype=self.parameters.dtype,
        )
        x = self.mean + self.std * sample
        return x

    def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor:
        if self.deterministic:
            return torch.Tensor([0.0])
        else:
            reduce_dim = list(range(1, self.mean.ndim))
            if other is None:
                return 0.5 * torch.sum(
                    torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
                    dim=reduce_dim,
                )
            else:
                return 0.5 * torch.sum(
                    torch.pow(self.mean - other.mean, 2) / other.var
                    + self.var / other.var
                    - 1.0
                    - self.logvar
                    + other.logvar,
                    dim=reduce_dim,
                )

    def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor:
        if self.deterministic:
            return torch.Tensor([0.0])
        logtwopi = np.log(2.0 * np.pi)
        return 0.5 * torch.sum(
            logtwopi + self.logvar +
            torch.pow(sample - self.mean, 2) / self.var,
            dim=dims,
        )

    def mode(self) -> torch.Tensor:
        return self.mean