Spaces:
Running
Running
File size: 13,895 Bytes
c86cb4d 03e40e5 c86cb4d 03e40e5 c86cb4d f4edd92 c86cb4d f4edd92 c86cb4d f4edd92 c86cb4d c9e66b7 c86cb4d f4edd92 c86cb4d adb1393 f4edd92 c86cb4d f4edd92 c9e66b7 adb1393 f4edd92 c9e66b7 adb1393 f4edd92 a849379 adb1393 a849379 adb1393 f4edd92 a849379 adb1393 f4edd92 adb1393 a849379 c9e66b7 f4edd92 c9e66b7 03e40e5 c95d3e8 adb1393 c86cb4d adb1393 c86cb4d adb1393 c86cb4d c9e66b7 c86cb4d f4edd92 c86cb4d f4edd92 c86cb4d f4edd92 c86cb4d f4edd92 c86cb4d adb1393 c86cb4d adb1393 c86cb4d adb1393 03e40e5 f4edd92 c86cb4d f4edd92 c86cb4d adb1393 c86cb4d adb1393 f4edd92 c86cb4d 03e40e5 f4edd92 c86cb4d f4edd92 03e40e5 f4edd92 03e40e5 f4edd92 c86cb4d c95d3e8 c86cb4d f4edd92 03e40e5 f4edd92 03e40e5 f4edd92 03e40e5 f4edd92 c86cb4d c9e66b7 f4edd92 03e40e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import streamlit as st
import pandas as pd
import sqlite3
import tempfile
from fpdf import FPDF
import os
import re
import json
from pathlib import Path
import plotly.express as px
from datetime import datetime, timezone
from crewai import Agent, Crew, Process, Task
from crewai.tools import tool
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain.schema.output import LLMResult
from langchain_community.tools.sql_database.tool import (
InfoSQLDatabaseTool,
ListSQLDatabaseTool,
QuerySQLCheckerTool,
QuerySQLDataBaseTool,
)
from langchain_community.utilities.sql_database import SQLDatabase
from datasets import load_dataset
import tempfile
st.title("SQL-RAG Using CrewAI π")
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
# Initialize LLM
llm = None
# Model Selection
model_choice = st.radio("Select LLM", ["GPT-4o", "llama-3.3-70b"], index=0, horizontal=True)
# API Key Validation and LLM Initialization
groq_api_key = os.getenv("GROQ_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
if model_choice == "llama-3.3-70b":
if not groq_api_key:
st.error("Groq API key is missing. Please set the GROQ_API_KEY environment variable.")
llm = None
else:
llm = ChatGroq(groq_api_key=groq_api_key, model="groq/llama-3.3-70b-versatile")
elif model_choice == "GPT-4o":
if not openai_api_key:
st.error("OpenAI API key is missing. Please set the OPENAI_API_KEY environment variable.")
llm = None
else:
llm = ChatOpenAI(api_key=openai_api_key, model="gpt-4o")
# Initialize session state for data persistence
if "df" not in st.session_state:
st.session_state.df = None
if "show_preview" not in st.session_state:
st.session_state.show_preview = False
# Dataset Input
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
if input_option == "Use Hugging Face Dataset":
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
if st.button("Load Dataset"):
try:
with st.spinner("Loading dataset..."):
dataset = load_dataset(dataset_name, split="train")
st.session_state.df = pd.DataFrame(dataset)
st.session_state.show_preview = True # Show preview after loading
st.success(f"Dataset '{dataset_name}' loaded successfully!")
except Exception as e:
st.error(f"Error: {e}")
elif input_option == "Upload CSV File":
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
if uploaded_file:
try:
st.session_state.df = pd.read_csv(uploaded_file)
st.session_state.show_preview = True # Show preview after loading
st.success("File uploaded successfully!")
except Exception as e:
st.error(f"Error loading file: {e}")
# Show Dataset Preview Only After Loading
if st.session_state.df is not None and st.session_state.show_preview:
st.subheader("π Dataset Preview")
st.dataframe(st.session_state.df.head())
# Function to create TXT file
def create_text_report_with_viz_temp(report, conclusion, visualizations):
content = f"### Analysis Report\n\n{report}\n\n### Visualizations\n"
for i, fig in enumerate(visualizations, start=1):
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
content += f"\n{i}. {fig_title}\n"
content += f" - X-axis: {x_axis}\n"
content += f" - Y-axis: {y_axis}\n"
if fig.data:
trace_types = set(trace.type for trace in fig.data)
content += f" - Chart Type(s): {', '.join(trace_types)}\n"
else:
content += " - No data available in this visualization.\n"
content += f"\n\n\n{conclusion}"
with tempfile.NamedTemporaryFile(delete=False, suffix=".txt", mode='w', encoding='utf-8') as temp_txt:
temp_txt.write(content)
return temp_txt.name
# Function to create PDF with report text and visualizations
def create_pdf_report_with_viz(report, conclusion, visualizations):
pdf = FPDF()
pdf.set_auto_page_break(auto=True, margin=15)
pdf.add_page()
pdf.set_font("Arial", size=12)
# Title
pdf.set_font("Arial", style="B", size=18)
pdf.cell(0, 10, "π Analysis Report", ln=True, align="C")
pdf.ln(10)
# Report Content
pdf.set_font("Arial", style="B", size=14)
pdf.cell(0, 10, "Analysis", ln=True)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, report)
pdf.ln(10)
pdf.set_font("Arial", style="B", size=14)
pdf.cell(0, 10, "Conclusion", ln=True)
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, conclusion)
# Add Visualizations
pdf.add_page()
pdf.set_font("Arial", style="B", size=16)
pdf.cell(0, 10, "π Visualizations", ln=True)
pdf.ln(5)
with tempfile.TemporaryDirectory() as temp_dir:
for i, fig in enumerate(visualizations, start=1):
fig_title = fig.layout.title.text if fig.layout.title.text else f"Visualization {i}"
x_axis = fig.layout.xaxis.title.text if fig.layout.xaxis.title.text else "X-axis"
y_axis = fig.layout.yaxis.title.text if fig.layout.yaxis.title.text else "Y-axis"
# Save each visualization as a PNG image
img_path = os.path.join(temp_dir, f"viz_{i}.png")
fig.write_image(img_path)
# Insert Title and Description
pdf.set_font("Arial", style="B", size=14)
pdf.multi_cell(0, 10, f"{i}. {fig_title}")
pdf.set_font("Arial", size=12)
pdf.multi_cell(0, 10, f"X-axis: {x_axis} | Y-axis: {y_axis}")
pdf.ln(3)
# Embed Visualization
pdf.image(img_path, w=170)
pdf.ln(10)
# Save PDF
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
pdf.output(temp_pdf.name)
return temp_pdf
def escape_markdown(text):
# Ensure text is a string
text = str(text)
# Escape Markdown characters: *, _, `, ~
escape_chars = r"(\*|_|`|~)"
return re.sub(escape_chars, r"\\\1", text)
# SQL-RAG Analysis
if st.session_state.df is not None:
temp_dir = tempfile.TemporaryDirectory()
db_path = os.path.join(temp_dir.name, "data.db")
connection = sqlite3.connect(db_path)
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
@tool("list_tables")
def list_tables() -> str:
"""List all tables in the database."""
return ListSQLDatabaseTool(db=db).invoke("")
@tool("tables_schema")
def tables_schema(tables: str) -> str:
"""Get the schema and sample rows for the specified tables."""
return InfoSQLDatabaseTool(db=db).invoke(tables)
@tool("execute_sql")
def execute_sql(sql_query: str) -> str:
"""Execute a SQL query against the database and return the results."""
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
@tool("check_sql")
def check_sql(sql_query: str) -> str:
"""Validate the SQL query syntax and structure before execution."""
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
# Agents for SQL data extraction and analysis
sql_dev = Agent(
role="Senior Database Developer",
goal="Extract data using optimized SQL queries.",
backstory="An expert in writing optimized SQL queries for complex databases.",
llm=llm,
tools=[list_tables, tables_schema, execute_sql, check_sql],
)
data_analyst = Agent(
role="Senior Data Analyst",
goal="Analyze the data and produce insights.",
backstory="A seasoned analyst who identifies trends and patterns in datasets.",
llm=llm,
)
report_writer = Agent(
role="Technical Report Writer",
goal="Write a structured report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
backstory="Specializes in detailed analytical reports without conclusions.",
llm=llm,
)
conclusion_writer = Agent(
role="Conclusion Specialist",
goal="Summarize findings into a clear and concise 3-5 line Conclusion highlighting only the most important insights.",
backstory="An expert in crafting impactful and clear conclusions.",
llm=llm,
)
# Define tasks for report and conclusion
extract_data = Task(
description="Extract data based on the query: {query}.",
expected_output="Database results matching the query.",
agent=sql_dev,
)
analyze_data = Task(
description="Analyze the extracted data for query: {query}.",
expected_output="Key Insights and Analysis without any Introduction or Conclusion.",
agent=data_analyst,
context=[extract_data],
)
write_report = Task(
description="Write the analysis report with Introduction and Key Insights. DO NOT include any Conclusion or Summary.",
expected_output="Markdown-formatted report excluding Conclusion.",
agent=report_writer,
context=[analyze_data],
)
write_conclusion = Task(
description="Summarize the key findings in 3-5 impactful lines, highlighting the maximum, minimum, and average salaries."
"Emphasize significant insights on salary distribution and influential compensation trends for strategic decision-making.",
expected_output="Markdown-formatted Conclusion section with key insights and statistics.",
agent=conclusion_writer,
context=[analyze_data],
)
# Separate Crews for report and conclusion
crew_report = Crew(
agents=[sql_dev, data_analyst, report_writer],
tasks=[extract_data, analyze_data, write_report],
process=Process.sequential,
verbose=True,
)
crew_conclusion = Crew(
agents=[data_analyst, conclusion_writer],
tasks=[write_conclusion],
process=Process.sequential,
verbose=True,
)
# Tabs for Query Results and Visualizations
tab1, tab2 = st.tabs(["π Query Insights + Viz", "π Full Data Viz"])
# Query Insights + Visualization
with tab1:
query = st.text_area("Enter Query:", value="Provide insights into the salary of a Principal Data Scientist.")
if st.button("Submit Query"):
with st.spinner("Processing query..."):
# Step 1: Generate the analysis report
report_inputs = {"query": query + " Provide detailed analysis but DO NOT include Conclusion."}
report_result = crew_report.kickoff(inputs=report_inputs)
# Step 2: Generate only the concise conclusion
conclusion_inputs = {"query": query + " Provide ONLY the most important insights in 3-5 concise lines."}
conclusion_result = crew_conclusion.kickoff(inputs=conclusion_inputs)
# Step 3: Display the report
#st.markdown("### Analysis Report:")
st.markdown(report_result if report_result else "β οΈ No Report Generated.")
# Step 4: Generate Visualizations
visualizations = []
fig_salary = px.box(st.session_state.df, x="job_title", y="salary_in_usd",
title="Salary Distribution by Job Title")
visualizations.append(fig_salary)
fig_experience = px.bar(
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
x="experience_level", y="salary_in_usd",
title="Average Salary by Experience Level"
)
visualizations.append(fig_experience)
fig_employment = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
title="Salary Distribution by Employment Type")
visualizations.append(fig_employment)
# Step 5: Insert Visual Insights
st.markdown("### Visual Insights")
for fig in visualizations:
st.plotly_chart(fig, use_container_width=True)
# Step 6: Display Concise Conclusion
#st.markdown("#### Conclusion")
safe_conclusion = escape_markdown(conclusion_result if conclusion_result else "β οΈ No Conclusion Generated.")
st.markdown(safe_conclusion)
# Full Data Visualization Tab
with tab2:
st.subheader("π Comprehensive Data Visualizations")
fig1 = px.histogram(st.session_state.df, x="job_title", title="Job Title Frequency")
st.plotly_chart(fig1)
fig2 = px.bar(
st.session_state.df.groupby("experience_level")["salary_in_usd"].mean().reset_index(),
x="experience_level", y="salary_in_usd",
title="Average Salary by Experience Level"
)
st.plotly_chart(fig2)
fig3 = px.box(st.session_state.df, x="employment_type", y="salary_in_usd",
title="Salary Distribution by Employment Type")
st.plotly_chart(fig3)
temp_dir.cleanup()
else:
st.info("Please load a dataset to proceed.")
# Sidebar Reference
with st.sidebar:
st.header("π Reference:")
st.markdown("[SQL Agents w CrewAI & Llama 3 - Plaban Nayak](https://github.com/plaban1981/Agents/blob/main/SQL_Agents_with_CrewAI_and_Llama_3.ipynb)")
|