Spaces:
Sleeping
Sleeping
DrishtiSharma
commited on
Update interim.py
Browse files- interim.py +40 -50
interim.py
CHANGED
@@ -20,10 +20,10 @@ from langchain_community.utilities.sql_database import SQLDatabase
|
|
20 |
from datasets import load_dataset
|
21 |
import tempfile
|
22 |
|
23 |
-
#
|
24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
25 |
|
26 |
-
# LLM
|
27 |
class LLMCallbackHandler(BaseCallbackHandler):
|
28 |
def __init__(self, log_path: Path):
|
29 |
self.log_path = log_path
|
@@ -37,116 +37,106 @@ class LLMCallbackHandler(BaseCallbackHandler):
|
|
37 |
with self.log_path.open("a", encoding="utf-8") as file:
|
38 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
39 |
|
40 |
-
# Initialize the LLM
|
41 |
llm = ChatGroq(
|
42 |
temperature=0,
|
43 |
-
model_name="
|
|
|
44 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
45 |
)
|
46 |
|
47 |
st.title("SQL-RAG Using CrewAI π")
|
48 |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
49 |
|
50 |
-
#
|
51 |
-
|
52 |
-
df = None
|
53 |
|
|
|
|
|
54 |
if input_option == "Use Hugging Face Dataset":
|
55 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
56 |
if st.button("Load Dataset"):
|
57 |
try:
|
58 |
-
with st.spinner("Loading
|
59 |
dataset = load_dataset(dataset_name, split="train")
|
60 |
-
df = pd.DataFrame(dataset)
|
61 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
62 |
-
st.dataframe(df.head())
|
63 |
except Exception as e:
|
64 |
-
st.error(f"Error
|
65 |
-
|
66 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
67 |
if uploaded_file:
|
68 |
-
df = pd.read_csv(uploaded_file)
|
69 |
st.success("File uploaded successfully!")
|
70 |
-
st.dataframe(df.head())
|
71 |
|
72 |
# SQL-RAG Analysis
|
73 |
-
if df is not None:
|
74 |
temp_dir = tempfile.TemporaryDirectory()
|
75 |
db_path = os.path.join(temp_dir.name, "data.db")
|
76 |
connection = sqlite3.connect(db_path)
|
77 |
-
df.to_sql("salaries", connection, if_exists="replace", index=False)
|
78 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
79 |
|
80 |
-
# Tools with proper docstrings
|
81 |
@tool("list_tables")
|
82 |
def list_tables() -> str:
|
83 |
-
"""List all tables in the
|
84 |
return ListSQLDatabaseTool(db=db).invoke("")
|
85 |
|
86 |
@tool("tables_schema")
|
87 |
def tables_schema(tables: str) -> str:
|
88 |
-
"""
|
89 |
-
Get the schema and sample rows for specific tables in the database.
|
90 |
-
Input: Comma-separated table names.
|
91 |
-
Example: 'salaries'
|
92 |
-
"""
|
93 |
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
94 |
|
95 |
@tool("execute_sql")
|
96 |
def execute_sql(sql_query: str) -> str:
|
97 |
-
"""
|
98 |
-
Execute a valid SQL query on the database and return the results.
|
99 |
-
Input: A SQL query string.
|
100 |
-
Example: 'SELECT * FROM salaries LIMIT 5;'
|
101 |
-
"""
|
102 |
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
103 |
|
104 |
@tool("check_sql")
|
105 |
def check_sql(sql_query: str) -> str:
|
106 |
-
"""
|
107 |
-
Check the validity of a SQL query before execution.
|
108 |
-
Input: A SQL query string.
|
109 |
-
Example: 'SELECT salary FROM salaries WHERE salary > 10000;'
|
110 |
-
"""
|
111 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
112 |
|
113 |
-
# Agents
|
114 |
sql_dev = Agent(
|
115 |
-
role="Database Developer",
|
116 |
-
goal="Extract
|
|
|
117 |
llm=llm,
|
118 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
119 |
)
|
120 |
|
121 |
data_analyst = Agent(
|
122 |
-
role="Data Analyst",
|
123 |
-
goal="Analyze the
|
|
|
124 |
llm=llm,
|
125 |
)
|
126 |
|
127 |
report_writer = Agent(
|
128 |
-
role="Report Writer",
|
129 |
-
goal="Summarize the
|
|
|
130 |
llm=llm,
|
131 |
)
|
132 |
|
133 |
-
# Tasks
|
134 |
extract_data = Task(
|
135 |
-
description="Extract data
|
136 |
-
expected_output="Database query
|
137 |
agent=sql_dev,
|
138 |
)
|
139 |
|
140 |
analyze_data = Task(
|
141 |
-
description="Analyze the
|
142 |
-
expected_output="Analysis
|
143 |
agent=data_analyst,
|
144 |
context=[extract_data],
|
145 |
)
|
146 |
|
147 |
write_report = Task(
|
148 |
-
description="Summarize the analysis into an executive
|
149 |
-
expected_output="Markdown
|
150 |
agent=report_writer,
|
151 |
context=[analyze_data],
|
152 |
)
|
@@ -158,9 +148,9 @@ if df is not None:
|
|
158 |
verbose=True,
|
159 |
)
|
160 |
|
161 |
-
query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary
|
162 |
if st.button("Submit Query"):
|
163 |
-
with st.spinner("Processing
|
164 |
inputs = {"query": query}
|
165 |
result = crew.kickoff(inputs=inputs)
|
166 |
st.markdown("### Analysis Report:")
|
@@ -168,4 +158,4 @@ if df is not None:
|
|
168 |
|
169 |
temp_dir.cleanup()
|
170 |
else:
|
171 |
-
st.info("
|
|
|
20 |
from datasets import load_dataset
|
21 |
import tempfile
|
22 |
|
23 |
+
# API Key
|
24 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
25 |
|
26 |
+
# Initialize LLM
|
27 |
class LLMCallbackHandler(BaseCallbackHandler):
|
28 |
def __init__(self, log_path: Path):
|
29 |
self.log_path = log_path
|
|
|
37 |
with self.log_path.open("a", encoding="utf-8") as file:
|
38 |
file.write(json.dumps({"event": "llm_end", "text": generation, "timestamp": datetime.now().isoformat()}) + "\n")
|
39 |
|
|
|
40 |
llm = ChatGroq(
|
41 |
temperature=0,
|
42 |
+
model_name="groq/llama-3.3-70b-versatile",
|
43 |
+
max_tokens=1024,
|
44 |
callbacks=[LLMCallbackHandler(Path("prompts.jsonl"))],
|
45 |
)
|
46 |
|
47 |
st.title("SQL-RAG Using CrewAI π")
|
48 |
st.write("Analyze datasets using natural language queries powered by SQL and CrewAI.")
|
49 |
|
50 |
+
# Initialize session state for data persistence
|
51 |
+
if "df" not in st.session_state:
|
52 |
+
st.session_state.df = None
|
53 |
|
54 |
+
# Dataset Input
|
55 |
+
input_option = st.radio("Select Dataset Input:", ["Use Hugging Face Dataset", "Upload CSV File"])
|
56 |
if input_option == "Use Hugging Face Dataset":
|
57 |
dataset_name = st.text_input("Enter Hugging Face Dataset Name:", value="Einstellung/demo-salaries")
|
58 |
if st.button("Load Dataset"):
|
59 |
try:
|
60 |
+
with st.spinner("Loading dataset..."):
|
61 |
dataset = load_dataset(dataset_name, split="train")
|
62 |
+
st.session_state.df = pd.DataFrame(dataset)
|
63 |
st.success(f"Dataset '{dataset_name}' loaded successfully!")
|
64 |
+
st.dataframe(st.session_state.df.head())
|
65 |
except Exception as e:
|
66 |
+
st.error(f"Error: {e}")
|
67 |
+
elif input_option == "Upload CSV File":
|
68 |
uploaded_file = st.file_uploader("Upload CSV File:", type=["csv"])
|
69 |
if uploaded_file:
|
70 |
+
st.session_state.df = pd.read_csv(uploaded_file)
|
71 |
st.success("File uploaded successfully!")
|
72 |
+
st.dataframe(st.session_state.df.head())
|
73 |
|
74 |
# SQL-RAG Analysis
|
75 |
+
if st.session_state.df is not None:
|
76 |
temp_dir = tempfile.TemporaryDirectory()
|
77 |
db_path = os.path.join(temp_dir.name, "data.db")
|
78 |
connection = sqlite3.connect(db_path)
|
79 |
+
st.session_state.df.to_sql("salaries", connection, if_exists="replace", index=False)
|
80 |
db = SQLDatabase.from_uri(f"sqlite:///{db_path}")
|
81 |
|
|
|
82 |
@tool("list_tables")
|
83 |
def list_tables() -> str:
|
84 |
+
"""List all tables in the database."""
|
85 |
return ListSQLDatabaseTool(db=db).invoke("")
|
86 |
|
87 |
@tool("tables_schema")
|
88 |
def tables_schema(tables: str) -> str:
|
89 |
+
"""Get schema and sample rows for given tables."""
|
|
|
|
|
|
|
|
|
90 |
return InfoSQLDatabaseTool(db=db).invoke(tables)
|
91 |
|
92 |
@tool("execute_sql")
|
93 |
def execute_sql(sql_query: str) -> str:
|
94 |
+
"""Execute a SQL query against the database."""
|
|
|
|
|
|
|
|
|
95 |
return QuerySQLDataBaseTool(db=db).invoke(sql_query)
|
96 |
|
97 |
@tool("check_sql")
|
98 |
def check_sql(sql_query: str) -> str:
|
99 |
+
"""Check the validity of a SQL query."""
|
|
|
|
|
|
|
|
|
100 |
return QuerySQLCheckerTool(db=db, llm=llm).invoke({"query": sql_query})
|
101 |
|
|
|
102 |
sql_dev = Agent(
|
103 |
+
role="Senior Database Developer",
|
104 |
+
goal="Extract data using optimized SQL queries.",
|
105 |
+
backstory="An expert in writing optimized SQL queries for complex databases.",
|
106 |
llm=llm,
|
107 |
tools=[list_tables, tables_schema, execute_sql, check_sql],
|
108 |
)
|
109 |
|
110 |
data_analyst = Agent(
|
111 |
+
role="Senior Data Analyst",
|
112 |
+
goal="Analyze the data and produce insights.",
|
113 |
+
backstory="A seasoned analyst who identifies trends and patterns in datasets.",
|
114 |
llm=llm,
|
115 |
)
|
116 |
|
117 |
report_writer = Agent(
|
118 |
+
role="Technical Report Writer",
|
119 |
+
goal="Summarize the insights into a clear report.",
|
120 |
+
backstory="An expert in summarizing data insights into readable reports.",
|
121 |
llm=llm,
|
122 |
)
|
123 |
|
|
|
124 |
extract_data = Task(
|
125 |
+
description="Extract data based on the query: {query}.",
|
126 |
+
expected_output="Database results matching the query.",
|
127 |
agent=sql_dev,
|
128 |
)
|
129 |
|
130 |
analyze_data = Task(
|
131 |
+
description="Analyze the extracted data for query: {query}.",
|
132 |
+
expected_output="Analysis text summarizing findings.",
|
133 |
agent=data_analyst,
|
134 |
context=[extract_data],
|
135 |
)
|
136 |
|
137 |
write_report = Task(
|
138 |
+
description="Summarize the analysis into an executive report.",
|
139 |
+
expected_output="Markdown report of insights.",
|
140 |
agent=report_writer,
|
141 |
context=[analyze_data],
|
142 |
)
|
|
|
148 |
verbose=True,
|
149 |
)
|
150 |
|
151 |
+
query = st.text_area("Enter Query:", placeholder="e.g., 'What is the average salary for senior employees?'")
|
152 |
if st.button("Submit Query"):
|
153 |
+
with st.spinner("Processing query..."):
|
154 |
inputs = {"query": query}
|
155 |
result = crew.kickoff(inputs=inputs)
|
156 |
st.markdown("### Analysis Report:")
|
|
|
158 |
|
159 |
temp_dir.cleanup()
|
160 |
else:
|
161 |
+
st.info("Please load a dataset to proceed.")
|