qwerrwe / data /README.md
Nanobit's picture
Clean up data readme
88bba24
|
raw
history blame
1.46 kB

Download some datasets

curl https://raw.githubusercontent.com/tloen/alpaca-lora/main/alpaca_data_gpt4.json -o data/raw/alpaca_data_gpt4.json
curl https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json -L -o data/raw/vicuna_cleaned.json
curl https://github.com/teknium1/GPTeacher/blob/main/Instruct/gpt4-instruct-similarity-0.6-dataset.json?raw=true -L -o data/raw/gpt4-instruct-similarity-0.6-dataset.json
curl https://github.com/teknium1/GPTeacher/blob/main/Roleplay/roleplay-similarity_0.6-instruct-dataset.json?raw=true -L -o data/raw/roleplay-similarity_0.6-instruct-dataset.json

Convert the JSON data files to JSONL.

python3 ./scripts/alpaca_json_to_jsonl.py --input data/alpaca_data_gpt4.json > data/alpaca_data_gpt4.jsonl
python3 ./scripts/alpaca_json_to_jsonl.py --input data/raw/vicuna_cleaned.json > data/vicuna_cleaned.jsonl
python3 ./scripts/alpaca_json_to_jsonl.py --input data/raw/roleplay-similarity_0.6-instruct-dataset.json > data/roleplay-similarity_0.6-instruct-dataset.jsonl
python3 ./scripts/alpaca_json_to_jsonl.py --input data/raw/gpt4-instruct-similarity-0.6-dataset.json > data/gpt4-instruct-similarity-0.6-dataset.jsonl

Using JSONL makes it easier to subset the data if you want a smaller training set, i.e get 2000 random examples.

shuf -n2000 data/vicuna_cleaned.jsonl > data/vicuna_cleaned.subset0.jsonl