qwerrwe / src /axolotl /utils /trainer.py
winglian's picture
Switch to parallel FFD bin packing algorithm. (#1619)
367b2e8 unverified
raw
history blame
16.2 kB
"""Module containing the Trainer class and related functions"""
import math
import os
import random
from contextlib import contextmanager
from functools import partial
from typing import List, Optional
import numpy as np
import torch
import torch.cuda
from accelerate.logging import get_logger
from datasets import set_caching_enabled
from torch.utils.data import DataLoader, RandomSampler
from transformers.utils import is_torch_bf16_gpu_available
from axolotl.core.trainer_builder import HFCausalTrainerBuilder, HFRLTrainerBuilder
from axolotl.utils.distributed import is_main_process, reduce_and_broadcast, zero_first
from axolotl.utils.samplers import MultipackBatchSampler, get_dataset_lengths
LOG = get_logger("axolotl")
@torch.jit.script
def weighted_cross_entropy(
logits: torch.Tensor, labels: torch.Tensor, weights: torch.Tensor
):
# Flatten the logits, labels, and weights tensors
logits = logits.view(
-1, logits.size(-1)
) # logits becomes of shape [batch_size*sequence_length, vocab_size]
labels = labels.view(-1) # labels becomes of shape [batch_size*sequence_length]
weights = weights.view(-1) # weights becomes of shape [batch_size*sequence_length]
# Compute the unweighted cross entropy loss
losses = torch.nn.functional.cross_entropy(logits, labels, reduction="none")
# Apply the weights to the losses and compute their sum
return (weights * losses).sum()
@torch.jit.script
def create_weighted_mask(labels: torch.Tensor):
# Check if the tensor is 2D. If not, unsqueeze it to make it 2D
if len(labels.shape) == 1:
labels = labels.unsqueeze(0)
weights = torch.zeros_like(labels).float()
for i in range(labels.shape[0]):
mask = labels[i] != -100
# Create a tensor to track group ids
group_ids = torch.zeros_like(labels[i]).int()
curr_group_id = 0
for j in range(1, len(labels[i])):
if mask[j] and not mask[j - 1]: # switch from masked to unmasked label
curr_group_id += 1 # start new group
group_ids[j] = (
curr_group_id if mask[j] else 0
) # assign group id if unmasked label
# Count only unmasked labels in each group
group_counts = torch.bincount(group_ids[mask])
mask_weights = torch.zeros_like(labels[i]).float()
mask_weights[mask] = 1.0 / group_counts[group_ids[mask]]
weights[i] = mask_weights
return weights.squeeze() # squeeze the output to match the input dimension
def trainer_weighted_loss(model_output, labels, shift_labels=True):
logits = (
model_output["logits"] if isinstance(model_output, dict) else model_output[0]
)
if shift_labels:
logits = logits[..., :-1, :].contiguous()
labels = labels[..., 1:].contiguous()
weights = create_weighted_mask(labels)
return weighted_cross_entropy(logits, labels, weights)
@contextmanager
def disable_datasets_caching():
try:
set_caching_enabled(False)
yield
finally:
set_caching_enabled(True)
def add_position_ids(sample):
sample_len = len(sample["input_ids"])
sample["position_ids"] = torch.arange(len(sample["input_ids"]))
sample["length"] = sample_len
return sample
def add_pose_position_ids(
sample,
max_context_len=32768,
split_on_token_ids: Optional[List[int]] = None,
chunks: int = 2,
):
"""
use the PoSE technique to extend the context length by randomly skipping
positions in the context. We only want to skip right before tokens in
the split_on_token_ids list. We should attempt to randomly distribute
the skips, but we don't need the final position_ids to be the full
context_len. There may be multiple turns in the context, so we want to
make sure we take into account the maximum possible number of skips
remaining in each sample.
"""
input_ids = sample["input_ids"]
sample_len = len(input_ids)
max_skips = max_context_len - sample_len
if split_on_token_ids is None:
split_on_token_ids = []
if split_on_token_ids:
split_indices = [
i for i, token_id in enumerate(input_ids) if token_id in split_on_token_ids
]
else:
chunk_len = sample_len // chunks
split_indices = [i * chunk_len for i in range(1, chunks)]
split_indices.append(len(input_ids)) # make sure we go to the end of the sample
if split_indices[0] < 2:
# drop the first split index if it's too close to the beginning
split_indices = split_indices[1:]
position_ids = []
prev_index = 0
total_skips = 0
for split_index in split_indices:
num_skips = (
random.randint(0, max_skips) # nosec B311
if prev_index != 0 and max_skips
else 0
)
max_skips -= num_skips
total_skips += num_skips
segment_position_ids = list(
range(prev_index + total_skips, split_index + total_skips)
)
position_ids.extend(segment_position_ids)
prev_index = split_index
sample["sequence_len"] = position_ids[-1]
position_ids = torch.tensor(position_ids)
sample["position_ids"] = position_ids
sample["length"] = len(position_ids)
assert len(position_ids) == len(input_ids)
return sample
def add_length(sample):
sample["length"] = len(sample["input_ids"])
return sample
def drop_long_seq(sample, sequence_len=2048, min_sequence_len=2):
return (
len(sample["input_ids"]) <= sequence_len
and len(sample["input_ids"]) >= min_sequence_len
)
def process_datasets_for_packing(cfg, train_dataset, eval_dataset):
drop_long = partial(
drop_long_seq,
sequence_len=cfg.sequence_len,
min_sequence_len=cfg.min_sample_len or 2,
)
with zero_first(is_main_process()):
if cfg.is_preprocess:
min_input_len = np.min(get_dataset_lengths(train_dataset))
LOG.debug(f"min_input_len: {min_input_len}", main_process_only=True)
max_input_len = np.max(get_dataset_lengths(train_dataset))
LOG.debug(f"max_input_len: {max_input_len}", main_process_only=True)
if (
cfg.is_mistral_derived_model and cfg.flash_attention
) or cfg.model_config_type == "mamba":
LOG.info("dropping attention_mask column")
train_dataset = train_dataset.remove_columns("attention_mask")
if eval_dataset:
eval_dataset = eval_dataset.remove_columns("attention_mask")
if cfg.model_config_type == "falcon":
LOG.info("dropping token_type_ids column if it exists")
if "token_type_ids" in train_dataset.column_names:
train_dataset = train_dataset.remove_columns("token_type_ids")
if eval_dataset and "token_type_ids" in eval_dataset.column_names:
eval_dataset = eval_dataset.remove_columns("token_type_ids")
train_dataset = train_dataset.filter(
drop_long,
num_proc=cfg.dataset_processes,
load_from_cache_file=not cfg.is_preprocess,
desc="Dropping Long Sequences",
)
if eval_dataset:
eval_dataset = eval_dataset.filter(
drop_long,
num_proc=cfg.dataset_processes,
load_from_cache_file=not cfg.is_preprocess,
desc="Dropping Long Sequences",
)
if cfg.group_by_length:
train_dataset = train_dataset.map(
add_length,
num_proc=cfg.dataset_processes,
load_from_cache_file=not cfg.is_preprocess,
desc="Group By Length",
)
if cfg.use_pose:
pose_kwargs = {}
if cfg.pose_num_chunks is not None:
pose_kwargs["chunks"] = cfg.pose_num_chunks
pose_fn = partial(
add_pose_position_ids,
max_context_len=cfg.pose_max_context_len,
split_on_token_ids=cfg.pose_split_on_token_ids,
**pose_kwargs,
)
train_dataset = train_dataset.map(
pose_fn,
num_proc=cfg.dataset_processes,
load_from_cache_file=not cfg.is_preprocess,
desc="Add position_id column (PoSE)",
)
train_dataset = train_dataset.sort("sequence_len")
if cfg.eval_sample_packing is not False:
if eval_dataset:
eval_dataset = eval_dataset.map(
pose_fn,
num_proc=cfg.dataset_processes,
load_from_cache_file=not cfg.is_preprocess,
desc="Add position_id column (PoSE)",
)
elif cfg.sample_packing:
train_dataset = train_dataset.map(
add_position_ids,
num_proc=cfg.dataset_processes,
load_from_cache_file=not cfg.is_preprocess,
desc="Add position_id column (Sample Packing)",
)
if cfg.eval_sample_packing is not False:
if eval_dataset:
eval_dataset = eval_dataset.map(
add_position_ids,
num_proc=cfg.dataset_processes,
load_from_cache_file=not cfg.is_preprocess,
desc="Add position_id column (Sample Packing)",
)
return train_dataset, eval_dataset
def process_pretraining_datasets_for_packing(
train_dataset, sequence_len, skip_position_ids=True
):
drop_long = partial(drop_long_seq, sequence_len=sequence_len)
train_dataset = train_dataset.filter(
drop_long,
desc="Dropping Long Sequences",
)
if skip_position_ids:
train_dataset = train_dataset.map(
add_position_ids,
desc="Add position_id column (Pretraining Sample Packing)",
)
return train_dataset
def calculate_total_num_steps(cfg, train_dataset, update=True):
if not cfg.total_num_tokens:
total_num_tokens = np.sum(
train_dataset.data.column("input_ids")
.to_pandas()
.apply(lambda x: len(x)) # pylint: disable=unnecessary-lambda
.values
)
LOG.debug(f"total_num_tokens: {total_num_tokens:_}", main_process_only=True)
if update:
cfg.total_num_tokens = total_num_tokens
skip_estimates = cfg.model_config_type == "mamba"
if not skip_estimates and not cfg.total_supervised_tokens:
total_supervised_tokens = (
train_dataset.data.column("labels")
.to_pandas()
.apply(lambda x: np.sum(np.array(x) != -100))
.sum()
)
LOG.debug(
f"`total_supervised_tokens: {total_supervised_tokens:_}`",
main_process_only=True,
)
if update:
cfg.total_supervised_tokens = total_supervised_tokens
if not skip_estimates and cfg.sample_packing:
# we have to drop anything longer then sequence len otherwise
# flash attention with position ids fails
if cfg.sample_packing_eff_est:
total_num_steps = (
# match count to len est in dataloader
(
math.floor(
0.99
* cfg.total_num_tokens
/ cfg.sample_packing_eff_est
/ cfg.sequence_len
// cfg.batch_size
)
- 1
)
* cfg.num_epochs
)
LOG.debug(
f"total_num_tokens: {cfg.total_num_tokens:_}, total_num_steps: {total_num_steps:_}",
main_process_only=True,
)
else:
if cfg.flash_attention:
sampler_batch_size = 1
batch_max_len = cfg.micro_batch_size * cfg.sequence_len
else:
sampler_batch_size = cfg.micro_batch_size
batch_max_len = cfg.sequence_len
sampler = MultipackBatchSampler(
sampler=RandomSampler(train_dataset),
lengths=get_dataset_lengths(train_dataset),
batch_size=sampler_batch_size,
batch_max_len=batch_max_len,
group_size=cfg.sample_packing_group_size,
bin_size=cfg.sample_packing_bin_size,
drop_last=True,
)
data_loader = DataLoader(
train_dataset.remove_columns(["length"]),
batch_sampler=sampler,
)
data_loader_len = len(data_loader) * cfg.micro_batch_size // cfg.batch_size
LOG.debug(f"data_loader_len: {data_loader_len}", main_process_only=True)
# FIXME: is there a bug here somewhere? the total num steps depends
# on the agreed on value for sample_packing_eff_est
total_num_steps = int(math.floor(data_loader_len * cfg.num_epochs))
def calc_sample_packing_eff_est(estimates: List[float]):
LOG.info(f"sample_packing_eff_est across ranks: {repr(estimates)}")
return max(estimates)
sample_packing_actual_eff_all = reduce_and_broadcast(
lambda: sampler.efficiency(), # pylint: disable=unnecessary-lambda
calc_sample_packing_eff_est,
)
sample_packing_eff_est = (
math.ceil(sample_packing_actual_eff_all * 100.0) / 100.0
)
if update:
cfg.sample_packing_eff_est = sample_packing_eff_est
LOG.debug(
f"sample_packing_eff_est: {cfg.sample_packing_eff_est}",
main_process_only=True,
)
else:
total_num_steps = int(
math.ceil(len(train_dataset) * cfg.num_epochs / cfg.batch_size)
)
LOG.debug(f"total_num_steps: {total_num_steps}", main_process_only=True)
return total_num_steps
def setup_fsdp_envs(cfg):
os.environ["ACCELERATE_USE_FSDP"] = "true"
if cfg.fsdp_config.fsdp_activation_checkpointing:
os.environ["FSDP_ACTIVATION_CHECKPOINTING"] = "true"
if cfg.fsdp_config.fsdp_offload_params:
os.environ["FSDP_OFFLOAD_PARAMS"] = "true"
if cfg.fsdp_config.fsdp_sync_module_states:
os.environ["FSDP_SYNC_MODULE_STATES"] = "true"
if cfg.fsdp_config.fsdp_cpu_ram_efficient_loading:
os.environ["FSDP_CPU_RAM_EFFICIENT_LOADING"] = "true"
if cfg.fsdp_config.fsdp_use_orig_params:
os.environ["FSDP_USE_ORIG_PARAMS"] = "true"
if cfg.fsdp_config.fsdp_state_dict_type:
os.environ["FSDP_STATE_DICT_TYPE"] = cfg.fsdp_config.fsdp_state_dict_type
if cfg.fsdp_config.fsdp_auto_wrap_policy:
os.environ["FSDP_AUTO_WRAP_POLICY"] = cfg.fsdp_config.fsdp_auto_wrap_policy
if cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap:
os.environ[
"FSDP_TRANSFORMER_CLS_TO_WRAP"
] = cfg.fsdp_config.fsdp_transformer_layer_cls_to_wrap
def prepare_optim_env(cfg):
if cfg.fsdp:
setup_fsdp_envs(cfg)
elif cfg.deepspeed:
os.environ["ACCELERATE_USE_DEEPSPEED"] = "true"
os.environ["ACCELERATE_DEEPSPEED_CONFIG_FILE"] = cfg.deepspeed
if (cfg.bf16 == "auto" and is_torch_bf16_gpu_available()) or cfg.bf16 is True:
os.environ["ACCELERATE_MIXED_PRECISION"] = "bf16"
elif cfg.fp16:
os.environ["ACCELERATE_MIXED_PRECISION"] = "fp16"
def setup_trainer(cfg, train_dataset, eval_dataset, model, tokenizer, total_num_steps):
if cfg.rl in ["dpo", "ipo", "kto_pair", "orpo", "kto"]:
trainer_builder = HFRLTrainerBuilder(cfg, model[0], tokenizer)
trainer_builder.model_ref = model[1]
trainer_builder.peft_config = model[2]
else:
trainer_builder = HFCausalTrainerBuilder(cfg, model[0], tokenizer)
trainer_builder.train_dataset = train_dataset
trainer_builder.eval_dataset = eval_dataset
return trainer_builder.build(total_num_steps)