Switch to parallel FFD bin packing algorithm. (#1619)
Browse files* Switch to parallel FFD bin packing algorithm.
Add support for packing in a distributed context.
Add packing efficiency estimate back.
* revert changes to distributed code
* chore: lint
* fix config w new params for packing test
* add sample_packing_group_size and sample_packing_bin_size to cfg schema
* fix lamdbda function
* fix sampler/dataloader calculations for packing
---------
Co-authored-by: dsesclei <[email protected]>
- docs/config.qmd +5 -0
- src/axolotl/core/trainer_builder.py +40 -30
- src/axolotl/utils/config/models/input/v0_4_1/__init__.py +2 -0
- src/axolotl/utils/data/pretraining.py +9 -3
- src/axolotl/utils/samplers/multipack.py +89 -161
- src/axolotl/utils/trainer.py +9 -10
- tests/test_packed_batch_sampler.py +13 -15
- tests/test_packed_pretraining.py +2 -0
docs/config.qmd
CHANGED
@@ -186,6 +186,11 @@ eval_sample_packing:
|
|
186 |
# The trainer will provide recommended values for these values.
|
187 |
sample_packing_eff_est:
|
188 |
total_num_tokens:
|
|
|
|
|
|
|
|
|
|
|
189 |
|
190 |
# Passed through to transformers when loading the model when launched without accelerate
|
191 |
# Use `sequential` when training w/ model parallelism to limit memory
|
|
|
186 |
# The trainer will provide recommended values for these values.
|
187 |
sample_packing_eff_est:
|
188 |
total_num_tokens:
|
189 |
+
# Increasing the following values helps with packing, but usually only slightly (<%1.)
|
190 |
+
# The number of samples packed at a time.
|
191 |
+
sample_packing_group_size: 100000
|
192 |
+
# The number of samples which can be packed into one sequence. Increase if using a large sequence_len with many short samples.
|
193 |
+
sample_packing_bin_size: 200
|
194 |
|
195 |
# Passed through to transformers when loading the model when launched without accelerate
|
196 |
# Use `sequential` when training w/ model parallelism to limit memory
|
src/axolotl/core/trainer_builder.py
CHANGED
@@ -125,14 +125,22 @@ class AxolotlTrainingArguments(TrainingArguments):
|
|
125 |
default=1.0,
|
126 |
metadata={"help": "Sample packing efficiency for calculating batch length."},
|
127 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
max_seq_length: int = field(
|
129 |
default=2048,
|
130 |
metadata={"help": "The maximum sequence length the model can handle"},
|
131 |
)
|
132 |
-
sample_packing_seq_len_multiplier: int = field(
|
133 |
-
default=1,
|
134 |
-
metadata={"help": "the multiplier for the max len for packed sequences"},
|
135 |
-
)
|
136 |
relora_steps: Optional[int] = field(
|
137 |
default=None,
|
138 |
metadata={"help": "how often to reset for ReLoRA"},
|
@@ -346,11 +354,11 @@ class AxolotlTrainer(Trainer):
|
|
346 |
)
|
347 |
return MultipackBatchSampler(
|
348 |
RandomSampler(self.train_dataset),
|
349 |
-
batch_size=batch_size,
|
350 |
-
drop_last=True,
|
351 |
-
batch_max_len=batch_max_len,
|
352 |
lengths=get_dataset_lengths(self.train_dataset),
|
353 |
-
|
|
|
|
|
|
|
354 |
)
|
355 |
if self.args.curriculum_sampling:
|
356 |
return SequentialSampler(self.train_dataset)
|
@@ -370,11 +378,11 @@ class AxolotlTrainer(Trainer):
|
|
370 |
)
|
371 |
return MultipackBatchSampler(
|
372 |
SequentialSampler(eval_dataset),
|
373 |
-
|
374 |
-
drop_last=True,
|
375 |
batch_max_len=batch_max_len,
|
376 |
-
|
377 |
-
|
|
|
378 |
)
|
379 |
return super()._get_eval_sampler(eval_dataset)
|
380 |
|
@@ -1113,11 +1121,6 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
1113 |
if self.cfg.save_safetensors is not None:
|
1114 |
training_arguments_kwargs["save_safetensors"] = self.cfg.save_safetensors
|
1115 |
|
1116 |
-
if self.cfg.sample_packing_eff_est:
|
1117 |
-
training_arguments_kwargs[
|
1118 |
-
"sample_packing_efficiency"
|
1119 |
-
] = self.cfg.sample_packing_eff_est
|
1120 |
-
|
1121 |
if self.cfg.dataloader_pin_memory is not None:
|
1122 |
training_arguments_kwargs[
|
1123 |
"dataloader_pin_memory"
|
@@ -1293,20 +1296,27 @@ class HFCausalTrainerBuilder(TrainerBuilderBase):
|
|
1293 |
training_arguments_kwargs["weight_decay"] = (
|
1294 |
self.cfg.weight_decay if self.cfg.weight_decay is not None else 0.0
|
1295 |
)
|
1296 |
-
|
1297 |
-
|
1298 |
-
)
|
1299 |
-
training_arguments_kwargs["multipack_real_batches"] = (
|
1300 |
-
self.cfg.flash_attention is not True
|
1301 |
-
)
|
1302 |
-
training_arguments_kwargs["eval_sample_packing"] = (
|
1303 |
-
self.cfg.sample_packing
|
1304 |
-
if self.cfg.eval_sample_packing is not False
|
1305 |
-
else False
|
1306 |
-
)
|
1307 |
training_arguments_kwargs[
|
1308 |
-
"
|
1309 |
-
] = self.cfg.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1310 |
if self.cfg.relora_steps:
|
1311 |
training_arguments_kwargs["relora_steps"] = self.cfg.relora_steps
|
1312 |
training_arguments_kwargs[
|
|
|
125 |
default=1.0,
|
126 |
metadata={"help": "Sample packing efficiency for calculating batch length."},
|
127 |
)
|
128 |
+
sample_packing_bin_size: int = field(
|
129 |
+
default=200,
|
130 |
+
metadata={
|
131 |
+
"help": "The max number of samples that packed sample can contain after packing. Increase for better packing."
|
132 |
+
},
|
133 |
+
)
|
134 |
+
sample_packing_group_size: int = field(
|
135 |
+
default=100000,
|
136 |
+
metadata={
|
137 |
+
"help": "The number of samples to group together for packing. Increase for better packing."
|
138 |
+
},
|
139 |
+
)
|
140 |
max_seq_length: int = field(
|
141 |
default=2048,
|
142 |
metadata={"help": "The maximum sequence length the model can handle"},
|
143 |
)
|
|
|
|
|
|
|
|
|
144 |
relora_steps: Optional[int] = field(
|
145 |
default=None,
|
146 |
metadata={"help": "how often to reset for ReLoRA"},
|
|
|
354 |
)
|
355 |
return MultipackBatchSampler(
|
356 |
RandomSampler(self.train_dataset),
|
|
|
|
|
|
|
357 |
lengths=get_dataset_lengths(self.train_dataset),
|
358 |
+
batch_max_len=batch_max_len,
|
359 |
+
batch_size=batch_size,
|
360 |
+
group_size=self.args.sample_packing_group_size,
|
361 |
+
bin_size=self.args.sample_packing_bin_size,
|
362 |
)
|
363 |
if self.args.curriculum_sampling:
|
364 |
return SequentialSampler(self.train_dataset)
|
|
|
378 |
)
|
379 |
return MultipackBatchSampler(
|
380 |
SequentialSampler(eval_dataset),
|
381 |
+
lengths=get_dataset_lengths(self.eval_dataset),
|
|
|
382 |
batch_max_len=batch_max_len,
|
383 |
+
batch_size=batch_size,
|
384 |
+
group_size=self.args.sample_packing_group_size,
|
385 |
+
bin_size=self.args.sample_packing_bin_size,
|
386 |
)
|
387 |
return super()._get_eval_sampler(eval_dataset)
|
388 |
|
|
|
1121 |
if self.cfg.save_safetensors is not None:
|
1122 |
training_arguments_kwargs["save_safetensors"] = self.cfg.save_safetensors
|
1123 |
|
|
|
|
|
|
|
|
|
|
|
1124 |
if self.cfg.dataloader_pin_memory is not None:
|
1125 |
training_arguments_kwargs[
|
1126 |
"dataloader_pin_memory"
|
|
|
1296 |
training_arguments_kwargs["weight_decay"] = (
|
1297 |
self.cfg.weight_decay if self.cfg.weight_decay is not None else 0.0
|
1298 |
)
|
1299 |
+
|
1300 |
+
training_arguments_kwargs["sample_packing"] = bool(self.cfg.sample_packing)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1301 |
training_arguments_kwargs[
|
1302 |
+
"multipack_real_batches"
|
1303 |
+
] = not self.cfg.flash_attention
|
1304 |
+
training_arguments_kwargs["eval_sample_packing"] = bool(
|
1305 |
+
self.cfg.eval_sample_packing
|
1306 |
+
)
|
1307 |
+
if self.cfg.sample_packing_bin_size is not None:
|
1308 |
+
training_arguments_kwargs[
|
1309 |
+
"sample_packing_bin_size"
|
1310 |
+
] = self.cfg.sample_packing_bin_size
|
1311 |
+
if self.cfg.sample_packing_group_size is not None:
|
1312 |
+
training_arguments_kwargs[
|
1313 |
+
"sample_packing_group_size"
|
1314 |
+
] = self.cfg.sample_packing_group_size
|
1315 |
+
if self.cfg.sample_packing_eff_est:
|
1316 |
+
training_arguments_kwargs[
|
1317 |
+
"sample_packing_efficiency"
|
1318 |
+
] = self.cfg.sample_packing_eff_est
|
1319 |
+
|
1320 |
if self.cfg.relora_steps:
|
1321 |
training_arguments_kwargs["relora_steps"] = self.cfg.relora_steps
|
1322 |
training_arguments_kwargs[
|
src/axolotl/utils/config/models/input/v0_4_1/__init__.py
CHANGED
@@ -551,6 +551,8 @@ class AxolotlInputConfig(
|
|
551 |
default=512, metadata={"help": "maximum prompt length for RL training"}
|
552 |
)
|
553 |
sample_packing: Optional[bool] = None
|
|
|
|
|
554 |
eval_sample_packing: Optional[bool] = None
|
555 |
pad_to_sequence_len: Optional[bool] = None
|
556 |
curriculum_sampling: Optional[bool] = None
|
|
|
551 |
default=512, metadata={"help": "maximum prompt length for RL training"}
|
552 |
)
|
553 |
sample_packing: Optional[bool] = None
|
554 |
+
sample_packing_group_size: Optional[int] = 100_000
|
555 |
+
sample_packing_bin_size: Optional[int] = 200
|
556 |
eval_sample_packing: Optional[bool] = None
|
557 |
pad_to_sequence_len: Optional[bool] = None
|
558 |
curriculum_sampling: Optional[bool] = None
|
src/axolotl/utils/data/pretraining.py
CHANGED
@@ -150,6 +150,8 @@ def wrap_pretraining_dataset(
|
|
150 |
max_seq_length=max_tokens,
|
151 |
batch_size=batch_size,
|
152 |
multipack_attn=cfg.pretrain_multipack_attn,
|
|
|
|
|
153 |
)
|
154 |
# set this to 1 so downstream data_loader doesn't try to increase the batch again
|
155 |
cfg.micro_batch_size = 1
|
@@ -189,6 +191,8 @@ def encode_packed_pretraining(
|
|
189 |
max_seq_length: int = 2048,
|
190 |
batch_size: int = 4,
|
191 |
multipack_attn: Optional[bool] = False,
|
|
|
|
|
192 |
) -> Dict[str, List]:
|
193 |
# pylint: disable=duplicate-code
|
194 |
# tokenize all the examples
|
@@ -202,11 +206,13 @@ def encode_packed_pretraining(
|
|
202 |
)
|
203 |
|
204 |
sampler = MultipackBatchSampler(
|
205 |
-
RandomSampler(train_dataset),
|
|
|
206 |
batch_size=1,
|
207 |
-
drop_last=True,
|
208 |
batch_max_len=batch_size * max_seq_length,
|
209 |
-
|
|
|
|
|
210 |
)
|
211 |
|
212 |
chunked_data = defaultdict(list)
|
|
|
150 |
max_seq_length=max_tokens,
|
151 |
batch_size=batch_size,
|
152 |
multipack_attn=cfg.pretrain_multipack_attn,
|
153 |
+
group_size=cfg.sample_packing_group_size,
|
154 |
+
bin_size=cfg.sample_packing_bin_size,
|
155 |
)
|
156 |
# set this to 1 so downstream data_loader doesn't try to increase the batch again
|
157 |
cfg.micro_batch_size = 1
|
|
|
191 |
max_seq_length: int = 2048,
|
192 |
batch_size: int = 4,
|
193 |
multipack_attn: Optional[bool] = False,
|
194 |
+
group_size: int = 100000,
|
195 |
+
bin_size: int = 200,
|
196 |
) -> Dict[str, List]:
|
197 |
# pylint: disable=duplicate-code
|
198 |
# tokenize all the examples
|
|
|
206 |
)
|
207 |
|
208 |
sampler = MultipackBatchSampler(
|
209 |
+
sampler=RandomSampler(train_dataset),
|
210 |
+
lengths=get_dataset_lengths(train_dataset),
|
211 |
batch_size=1,
|
|
|
212 |
batch_max_len=batch_size * max_seq_length,
|
213 |
+
group_size=group_size,
|
214 |
+
bin_size=bin_size,
|
215 |
+
drop_last=True,
|
216 |
)
|
217 |
|
218 |
chunked_data = defaultdict(list)
|
src/axolotl/utils/samplers/multipack.py
CHANGED
@@ -1,105 +1,64 @@
|
|
1 |
-
# pylint: skip-file
|
2 |
"""
|
3 |
Multipack Batch Sampler
|
4 |
"""
|
5 |
import logging
|
6 |
-
import
|
7 |
-
import
|
8 |
-
from typing import Any, Iterable, List, Union
|
9 |
|
10 |
import numba
|
11 |
import numpy as np
|
12 |
-
from torch.utils.data import BatchSampler
|
13 |
|
14 |
LOG = logging.getLogger("axolotl.utils.samplers.multipack")
|
15 |
|
16 |
|
|
|
17 |
@numba.njit
|
18 |
-
def
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
break
|
32 |
|
33 |
-
if
|
34 |
-
|
|
|
|
|
35 |
|
36 |
-
return
|
37 |
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
bins: List[Any] = []
|
47 |
-
bins_result: List[Any] = []
|
48 |
-
for a_id, size in enumerate(a):
|
49 |
-
add_new = True
|
50 |
-
for idx in range(len(bins)):
|
51 |
-
if bins[idx] >= size:
|
52 |
-
bins[idx] -= size
|
53 |
-
bins_result[idx].append(indices[a_id] + start_index)
|
54 |
-
add_new = False
|
55 |
-
break
|
56 |
-
|
57 |
-
if add_new:
|
58 |
-
bins.append(c - size)
|
59 |
-
bins_result.append([indices[a_id] + start_index])
|
60 |
-
|
61 |
-
return bins_result
|
62 |
-
|
63 |
-
|
64 |
-
@numba.njit
|
65 |
-
def allocate(
|
66 |
-
lengths: np.ndarray, lengths_cumsum: np.ndarray, rank: int, c: int, n: int
|
67 |
-
):
|
68 |
-
# Dynamic batch allocator, similar to Multifit
|
69 |
-
# https://en.wikipedia.org/wiki/Multifit_algorithm
|
70 |
-
# ~99.5% efficiency on OpenChat training set (12 * 2048 ctx len)
|
71 |
-
|
72 |
-
s = 0
|
73 |
-
start_index = 0
|
74 |
-
result = []
|
75 |
-
|
76 |
-
while True:
|
77 |
-
# binary search [l, r)
|
78 |
-
left = 1
|
79 |
-
right = 1 + np.searchsorted(lengths_cumsum[start_index:], s + c * n, "right")
|
80 |
-
|
81 |
-
while right - left > 1:
|
82 |
-
mid = (left + right) // 2
|
83 |
-
if ffd_check(lengths[start_index : start_index + mid], c, n):
|
84 |
-
left = mid
|
85 |
-
else:
|
86 |
-
right = mid
|
87 |
-
|
88 |
-
# use length l
|
89 |
-
batch = ffd_with_result(
|
90 |
-
lengths[start_index : start_index + left], c, start_index
|
91 |
-
)
|
92 |
-
assert len(batch) <= n
|
93 |
-
if len(batch) < n:
|
94 |
-
break
|
95 |
-
|
96 |
-
start_index += left
|
97 |
-
s = lengths_cumsum[start_index - 1]
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
-
return
|
103 |
|
104 |
|
105 |
class MultipackBatchSampler(BatchSampler):
|
@@ -109,94 +68,63 @@ class MultipackBatchSampler(BatchSampler):
|
|
109 |
|
110 |
def __init__(
|
111 |
self,
|
112 |
-
sampler
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
118 |
):
|
119 |
-
|
120 |
-
self.
|
121 |
self.batch_max_len = batch_max_len
|
122 |
-
self.
|
123 |
-
self.
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
self.epoch = 0
|
128 |
-
|
129 |
-
# statistics
|
130 |
-
self.eff_total_used = 0
|
131 |
-
self.eff_total_slots = 0
|
132 |
-
|
133 |
-
def set_epoch(self, epoch: int):
|
134 |
-
self.epoch = epoch
|
135 |
-
|
136 |
-
def generate_batches(self, set_stats=False):
|
137 |
-
indices = [idx for idx in self.sampler]
|
138 |
|
139 |
-
|
140 |
-
|
141 |
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
)
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
|
|
|
|
156 |
]
|
157 |
|
158 |
-
#
|
159 |
-
if
|
160 |
-
|
161 |
-
self.eff_total_slots += total_slots
|
162 |
|
163 |
-
return
|
164 |
|
165 |
def __iter__(self):
|
166 |
-
|
167 |
-
return iter(
|
168 |
-
|
169 |
-
def num_batches(self):
|
170 |
-
batches = self.generate_batches(set_stats=True)
|
171 |
-
return len(batches)
|
172 |
-
|
173 |
-
def efficiency(self):
|
174 |
-
return self.eff_total_used / self.eff_total_slots
|
175 |
|
176 |
def __len__(self):
|
177 |
-
self.
|
178 |
-
|
179 |
-
|
180 |
-
def _len_est(self):
|
181 |
-
world_size = int(os.getenv("WORLD_SIZE", "1"))
|
182 |
-
lengths_sum = np.sum(self.lengths)
|
183 |
-
lengths_sum_per_device = lengths_sum // world_size
|
184 |
-
LOG.info(
|
185 |
-
f"packing_efficiency_estimate: {self.packing_efficiency_estimate} "
|
186 |
-
f"total_num_tokens per device: {lengths_sum_per_device}"
|
187 |
-
)
|
188 |
-
|
189 |
-
# shave off 1% + 1 for dealing with variance in packing from random sampler to sampler
|
190 |
-
return max(
|
191 |
-
0,
|
192 |
-
(
|
193 |
-
world_size
|
194 |
-
* math.floor(
|
195 |
-
0.99
|
196 |
-
* lengths_sum_per_device
|
197 |
-
/ self.packing_efficiency_estimate
|
198 |
-
// (self.batch_max_len * self.batch_size)
|
199 |
-
)
|
200 |
-
- 1
|
201 |
-
),
|
202 |
-
)
|
|
|
|
|
1 |
"""
|
2 |
Multipack Batch Sampler
|
3 |
"""
|
4 |
import logging
|
5 |
+
from concurrent.futures import ProcessPoolExecutor
|
6 |
+
from multiprocessing import cpu_count
|
|
|
7 |
|
8 |
import numba
|
9 |
import numpy as np
|
10 |
+
from torch.utils.data import BatchSampler
|
11 |
|
12 |
LOG = logging.getLogger("axolotl.utils.samplers.multipack")
|
13 |
|
14 |
|
15 |
+
# First-fit-decreasing bin packing.
|
16 |
@numba.njit
|
17 |
+
def pack_group(items, group_offset, bin_capacity, max_items_per_bin):
|
18 |
+
idxs = np.argsort(items)[::-1]
|
19 |
+
sorted_items = items[idxs]
|
20 |
+
num_bins = len(items)
|
21 |
+
bins = np.full(num_bins, bin_capacity, dtype=np.int32)
|
22 |
+
bin_counts = np.zeros(num_bins, dtype=np.int32)
|
23 |
+
group_packing = np.full((num_bins, max_items_per_bin), -1, dtype=np.int32)
|
24 |
+
|
25 |
+
for idx, item in enumerate(sorted_items):
|
26 |
+
global_idx = idxs[idx] + group_offset
|
27 |
+
|
28 |
+
placed = False
|
29 |
+
for i in range(num_bins):
|
30 |
+
if bins[i] >= item and bin_counts[i] < max_items_per_bin:
|
31 |
+
bins[i] -= item
|
32 |
+
group_packing[i, bin_counts[i]] = global_idx
|
33 |
+
bin_counts[i] += 1
|
34 |
+
placed = True
|
35 |
break
|
36 |
|
37 |
+
if not placed:
|
38 |
+
raise ValueError(
|
39 |
+
f"Item could not be packed. Try increasing cfg.sample_packing_bin_size ({max_items_per_bin})."
|
40 |
+
)
|
41 |
|
42 |
+
return group_packing
|
43 |
|
44 |
|
45 |
+
def pack(items, bin_capacity, group_size, max_items_per_bin):
|
46 |
+
num_items = len(items)
|
47 |
+
num_processes = max(1, min(num_items // group_size, cpu_count()))
|
48 |
+
tasks = [
|
49 |
+
(items[i : i + group_size], i, bin_capacity, max_items_per_bin)
|
50 |
+
for i in range(0, num_items, group_size)
|
51 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
packed_bins = []
|
54 |
+
with ProcessPoolExecutor(max_workers=num_processes) as executor:
|
55 |
+
for group_packing in executor.map(pack_group, *zip(*tasks)):
|
56 |
+
for bin_pack in group_packing:
|
57 |
+
filtered_pack = bin_pack[bin_pack != -1]
|
58 |
+
if filtered_pack.size > 0:
|
59 |
+
packed_bins.append(filtered_pack.tolist())
|
60 |
|
61 |
+
return packed_bins
|
62 |
|
63 |
|
64 |
class MultipackBatchSampler(BatchSampler):
|
|
|
68 |
|
69 |
def __init__(
|
70 |
self,
|
71 |
+
sampler,
|
72 |
+
lengths,
|
73 |
+
batch_max_len,
|
74 |
+
batch_size,
|
75 |
+
group_size=100_000,
|
76 |
+
bin_size=200,
|
77 |
+
drop_last=False,
|
78 |
):
|
79 |
+
self.sampler = sampler
|
80 |
+
self.lengths = np.array(lengths, dtype=np.int32)
|
81 |
self.batch_max_len = batch_max_len
|
82 |
+
self.batch_size = batch_size
|
83 |
+
self.group_size = group_size
|
84 |
+
self.bin_size = bin_size
|
85 |
+
self.drop_last = drop_last
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
+
self._efficiency = None
|
88 |
+
self._batches = None
|
89 |
|
90 |
+
def efficiency(self):
|
91 |
+
if self._efficiency is None:
|
92 |
+
self._batches = self._pack_batches()
|
93 |
+
return self._efficiency
|
94 |
+
|
95 |
+
def _pack_batches(self):
|
96 |
+
# Get possibly shuffled indices from sampler.
|
97 |
+
sample_idxs = np.arange(len(self.sampler))
|
98 |
+
lengths = self.lengths[sample_idxs]
|
99 |
+
|
100 |
+
pack_idxs = pack(
|
101 |
+
lengths,
|
102 |
+
self.batch_max_len,
|
103 |
+
self.group_size,
|
104 |
+
self.bin_size,
|
105 |
)
|
106 |
|
107 |
+
used_tokens = self.lengths.sum()
|
108 |
+
available_tokens = len(pack_idxs) * self.batch_max_len
|
109 |
+
self._efficiency = used_tokens / available_tokens
|
110 |
+
|
111 |
+
# Wrap packs into batches.
|
112 |
+
batch_idxs = [
|
113 |
+
pack_idxs[i : i + self.batch_size]
|
114 |
+
for i in range(0, len(pack_idxs), self.batch_size)
|
115 |
]
|
116 |
|
117 |
+
# Drop last batch if needed.
|
118 |
+
if self.drop_last and len(batch_idxs[-1]) < self.batch_size:
|
119 |
+
batch_idxs = batch_idxs[:-1]
|
|
|
120 |
|
121 |
+
return batch_idxs
|
122 |
|
123 |
def __iter__(self):
|
124 |
+
self._batches = self._pack_batches()
|
125 |
+
return iter(self._batches)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
|
127 |
def __len__(self):
|
128 |
+
if self._batches is None:
|
129 |
+
self._batches = self._pack_batches()
|
130 |
+
return len(self._batches)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/axolotl/utils/trainer.py
CHANGED
@@ -341,27 +341,26 @@ def calculate_total_num_steps(cfg, train_dataset, update=True):
|
|
341 |
)
|
342 |
else:
|
343 |
if cfg.flash_attention:
|
344 |
-
|
345 |
batch_max_len = cfg.micro_batch_size * cfg.sequence_len
|
346 |
else:
|
347 |
-
|
348 |
batch_max_len = cfg.sequence_len
|
349 |
sampler = MultipackBatchSampler(
|
350 |
sampler=RandomSampler(train_dataset),
|
351 |
-
batch_size=batch_size,
|
352 |
-
drop_last=True,
|
353 |
-
batch_max_len=batch_max_len,
|
354 |
lengths=get_dataset_lengths(train_dataset),
|
|
|
|
|
|
|
|
|
|
|
355 |
)
|
356 |
|
357 |
data_loader = DataLoader(
|
358 |
train_dataset.remove_columns(["length"]),
|
359 |
batch_sampler=sampler,
|
360 |
)
|
361 |
-
data_loader_len = len(data_loader) //
|
362 |
-
cfg.world_size * cfg.gradient_accumulation_steps
|
363 |
-
)
|
364 |
-
actual_eff = sampler.efficiency()
|
365 |
LOG.debug(f"data_loader_len: {data_loader_len}", main_process_only=True)
|
366 |
# FIXME: is there a bug here somewhere? the total num steps depends
|
367 |
# on the agreed on value for sample_packing_eff_est
|
@@ -372,7 +371,7 @@ def calculate_total_num_steps(cfg, train_dataset, update=True):
|
|
372 |
return max(estimates)
|
373 |
|
374 |
sample_packing_actual_eff_all = reduce_and_broadcast(
|
375 |
-
lambda:
|
376 |
calc_sample_packing_eff_est,
|
377 |
)
|
378 |
sample_packing_eff_est = (
|
|
|
341 |
)
|
342 |
else:
|
343 |
if cfg.flash_attention:
|
344 |
+
sampler_batch_size = 1
|
345 |
batch_max_len = cfg.micro_batch_size * cfg.sequence_len
|
346 |
else:
|
347 |
+
sampler_batch_size = cfg.micro_batch_size
|
348 |
batch_max_len = cfg.sequence_len
|
349 |
sampler = MultipackBatchSampler(
|
350 |
sampler=RandomSampler(train_dataset),
|
|
|
|
|
|
|
351 |
lengths=get_dataset_lengths(train_dataset),
|
352 |
+
batch_size=sampler_batch_size,
|
353 |
+
batch_max_len=batch_max_len,
|
354 |
+
group_size=cfg.sample_packing_group_size,
|
355 |
+
bin_size=cfg.sample_packing_bin_size,
|
356 |
+
drop_last=True,
|
357 |
)
|
358 |
|
359 |
data_loader = DataLoader(
|
360 |
train_dataset.remove_columns(["length"]),
|
361 |
batch_sampler=sampler,
|
362 |
)
|
363 |
+
data_loader_len = len(data_loader) * cfg.micro_batch_size // cfg.batch_size
|
|
|
|
|
|
|
364 |
LOG.debug(f"data_loader_len: {data_loader_len}", main_process_only=True)
|
365 |
# FIXME: is there a bug here somewhere? the total num steps depends
|
366 |
# on the agreed on value for sample_packing_eff_est
|
|
|
371 |
return max(estimates)
|
372 |
|
373 |
sample_packing_actual_eff_all = reduce_and_broadcast(
|
374 |
+
lambda: sampler.efficiency(), # pylint: disable=unnecessary-lambda
|
375 |
calc_sample_packing_eff_est,
|
376 |
)
|
377 |
sample_packing_eff_est = (
|
tests/test_packed_batch_sampler.py
CHANGED
@@ -62,12 +62,14 @@ class TestBatchedSamplerPacking:
|
|
62 |
dataset,
|
63 |
)
|
64 |
train_dataset = concatenate_datasets([dataset_wrapper])
|
|
|
65 |
batch_sampler = MultipackBatchSampler(
|
66 |
sampler=RandomSampler(train_dataset),
|
|
|
67 |
batch_size=batch_size,
|
68 |
-
drop_last=True,
|
69 |
batch_max_len=max_seq_length,
|
70 |
-
|
|
|
71 |
)
|
72 |
|
73 |
loader = DataLoader(
|
@@ -81,19 +83,15 @@ class TestBatchedSamplerPacking:
|
|
81 |
),
|
82 |
num_workers=num_workers,
|
83 |
)
|
84 |
-
inputs = next(iter(loader))
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
assert inputs["attention_mask"].tolist()[0][-1] > 1
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
assert inputs["labels"].tolist()[1][0] == -100
|
98 |
-
assert inputs["attention_mask"].tolist()[1][0] == 0
|
99 |
-
assert inputs["attention_mask"].tolist()[1][-1] > 1
|
|
|
62 |
dataset,
|
63 |
)
|
64 |
train_dataset = concatenate_datasets([dataset_wrapper])
|
65 |
+
lengths = get_dataset_lengths(train_dataset)
|
66 |
batch_sampler = MultipackBatchSampler(
|
67 |
sampler=RandomSampler(train_dataset),
|
68 |
+
lengths=lengths,
|
69 |
batch_size=batch_size,
|
|
|
70 |
batch_max_len=max_seq_length,
|
71 |
+
group_size=100000,
|
72 |
+
bin_size=200,
|
73 |
)
|
74 |
|
75 |
loader = DataLoader(
|
|
|
83 |
),
|
84 |
num_workers=num_workers,
|
85 |
)
|
|
|
86 |
|
87 |
+
batch_idxs = []
|
88 |
+
for batch in batch_sampler:
|
89 |
+
for pack in batch:
|
90 |
+
batch_idxs.extend(pack)
|
91 |
|
92 |
+
for batch in loader:
|
93 |
+
assert len(batch["input_ids"]) <= batch_size * max_seq_length
|
94 |
+
assert batch["input_ids"].shape[1] == max_seq_length
|
|
|
95 |
|
96 |
+
original_idxs = set(range(len(train_dataset)))
|
97 |
+
assert original_idxs == set(batch_idxs)
|
|
|
|
|
|
tests/test_packed_pretraining.py
CHANGED
@@ -42,6 +42,8 @@ class TestPretrainingPacking(unittest.TestCase):
|
|
42 |
"pad_to_sequence_len": True,
|
43 |
"sequence_len": 2048,
|
44 |
"micro_batch_size": 2,
|
|
|
|
|
45 |
}
|
46 |
)
|
47 |
|
|
|
42 |
"pad_to_sequence_len": True,
|
43 |
"sequence_len": 2048,
|
44 |
"micro_batch_size": 2,
|
45 |
+
"sample_packing_group_size": 100000,
|
46 |
+
"sample_packing_bin_size": 200,
|
47 |
}
|
48 |
)
|
49 |
|