|
"""Module for testing streaming dataset sequence packing""" |
|
import functools |
|
import unittest |
|
|
|
import torch |
|
from datasets import load_dataset |
|
from torch.utils.data import DataLoader |
|
from transformers import AutoTokenizer |
|
|
|
from axolotl.utils.data import get_dataset_wrapper, wrap_pretraining_dataset |
|
from axolotl.utils.dict import DictDefault |
|
|
|
|
|
class TestPretrainingPacking(unittest.TestCase): |
|
""" |
|
Test class for packing streaming dataset sequences |
|
""" |
|
|
|
def setUp(self) -> None: |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained("huggyllama/llama-7b") |
|
self.tokenizer.pad_token = "</s>" |
|
|
|
def test_packing_stream_dataset(self): |
|
|
|
dataset = load_dataset( |
|
"c4", |
|
"en", |
|
streaming=True, |
|
)["train"] |
|
|
|
cfg = DictDefault( |
|
{ |
|
"pretraining_dataset": [ |
|
{ |
|
"path": "c4", |
|
"name": "en", |
|
"type": "pretrain", |
|
} |
|
], |
|
"sample_packing": True, |
|
"pad_to_sequence_len": True, |
|
"sequence_len": 2048, |
|
"micro_batch_size": 2, |
|
"sample_packing_group_size": 100000, |
|
"sample_packing_bin_size": 200, |
|
} |
|
) |
|
|
|
ds_wrapper_partial = functools.partial( |
|
get_dataset_wrapper, |
|
cfg.pretraining_dataset[0], |
|
self.tokenizer, |
|
cfg, |
|
cfg.pretraining_dataset[0]["type"] or "pretrain", |
|
) |
|
|
|
original_bsz = cfg.micro_batch_size |
|
train_dataset = wrap_pretraining_dataset( |
|
dataset, |
|
self.tokenizer, |
|
cfg, |
|
ds_wrapper_partial, |
|
max_tokens=cfg.sequence_len, |
|
batch_size=cfg.micro_batch_size, |
|
seed=cfg.seed or 42, |
|
) |
|
|
|
trainer_loader = DataLoader( |
|
train_dataset, |
|
batch_size=1, |
|
collate_fn=None, |
|
drop_last=True, |
|
) |
|
idx = 0 |
|
for data in trainer_loader: |
|
if idx > 10: |
|
break |
|
assert data["input_ids"].shape == torch.Size( |
|
[1, original_bsz * cfg.sequence_len] |
|
) |
|
assert data["position_ids"].shape == torch.Size( |
|
[1, original_bsz * cfg.sequence_len] |
|
) |
|
assert data["labels"].shape == torch.Size( |
|
[1, original_bsz * cfg.sequence_len] |
|
) |
|
assert data["attention_mask"].shape == torch.Size( |
|
[1, original_bsz * cfg.sequence_len] |
|
) |
|
idx += 1 |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|