qwerrwe / src /axolotl /utils /validation.py
winglian's picture
params are adam_*, not adamw_*
19cf0bd
raw
history blame
4.41 kB
"""Module for validating config files"""
import logging
import torch
def validate_config(cfg):
if cfg.gradient_accumulation_steps and cfg.batch_size:
raise ValueError(
"please set only one of gradient_accumulation_steps or batch_size"
)
if cfg.batch_size:
logging.warning(
"%s\n%s",
"batch_size is not recommended. Please use gradient_accumulation_steps instead.",
"To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.",
)
if cfg.load_4bit:
raise ValueError(
"cfg.load_4bit parameter has been deprecated and replaced by cfg.gptq"
)
if cfg.adapter == "qlora":
if cfg.merge_lora:
# can't merge qlora if loaded in 8bit or 4bit
if cfg.load_in_8bit:
raise ValueError("Can't merge qlora if loaded in 8bit")
if cfg.gptq:
raise ValueError("Can't merge qlora if gptq")
if cfg.load_in_4bit:
raise ValueError("Can't merge qlora if loaded in 4bit")
else:
if cfg.load_in_8bit:
raise ValueError("Can't load qlora in 8bit")
if cfg.gptq:
raise ValueError("Can't load qlora if gptq")
if not cfg.load_in_4bit:
raise ValueError("Require cfg.load_in_4bit to be True for qlora")
if not cfg.load_in_8bit and cfg.adapter == "lora":
logging.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
if cfg.trust_remote_code:
logging.warning(
"`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
)
if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True:
raise ValueError(
"Require cfg.hf_use_auth_token to be True for push_dataset_to_hub"
)
if (cfg.base_model and "falcon" in cfg.base_model.lower()) and cfg.fsdp:
raise ValueError("FSDP is not supported for falcon models")
if (
cfg.base_model and "mpt" in cfg.base_model.lower()
) and cfg.gradient_checkpointing:
raise ValueError("gradient_checkpointing is not supported for MPT models")
if cfg.flash_optimum is True:
if cfg.adapter:
logging.warning(
"BetterTransformers probably doesn't work with PEFT adapters"
)
if cfg.fp16 or cfg.bf16:
raise ValueError("AMP is not supported with BetterTransformer")
if cfg.float16 is not True and cfg.bloat16 is not True:
logging.warning(
"You should probably set bfloat16 or float16 to true to "
"load the model in float16 for BetterTransformers"
)
if int(torch.__version__.split(".")[0]) < 2:
logging.warning("torch>=2.0.0 required")
raise ValueError(
f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
)
if cfg.pretraining_dataset and cfg.group_by_length:
logging.warning(
"You probably want to disable group_by_length as it will force a streamed dataset to download completely."
)
if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and (
not cfg.optimizer or "adamw" not in cfg.optimizer
):
logging.warning("adamw hyperparameters found, but no adamw optimizer set")
if cfg.push_to_hub_model_id:
raise ValueError(
"push_to_hub_model_id is deprecated. Please use hub_model_id instead."
)
# TODO
# MPT 7b
# https://github.com/facebookresearch/bitsandbytes/issues/25
# no 8bit adaAmw w bf16
# GPT-NeoX
# evals broken when extending context len
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py", line 162, in forward attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/optimum/bettertransformer/models/attention.py", line 74, in gpt2_wrapped_scaled_dot_product
# attention_mask = causal_mask + attention_mask
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (8132) at non-singleton dimension 3