File size: 4,411 Bytes
c2dbf2c a5bf838 1210dc8 71a43f8 a5bf838 1210dc8 1d7da3b 3aad5f3 3c71c8d dd00657 52dd92a dd00657 1d7da3b 48f4c05 52dd92a 48f4c05 52dd92a dd00657 fe0e69f 52dd92a 2824423 52dd92a a5bf838 1c33eb8 b832a0a 1c33eb8 bfd27ba babf0fd 14668fa 1edc30c 1210dc8 1edc30c 1a82082 1210dc8 1a82082 1210dc8 71a43f8 1210dc8 1edc30c eea2731 19cf0bd cb9d3af e79c8e6 1d7da3b ab5cd28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
"""Module for validating config files"""
import logging
import torch
def validate_config(cfg):
if cfg.gradient_accumulation_steps and cfg.batch_size:
raise ValueError(
"please set only one of gradient_accumulation_steps or batch_size"
)
if cfg.batch_size:
logging.warning(
"%s\n%s",
"batch_size is not recommended. Please use gradient_accumulation_steps instead.",
"To calculate the equivalent gradient_accumulation_steps, divide batch_size / micro_batch_size / number of gpus.",
)
if cfg.load_4bit:
raise ValueError(
"cfg.load_4bit parameter has been deprecated and replaced by cfg.gptq"
)
if cfg.adapter == "qlora":
if cfg.merge_lora:
# can't merge qlora if loaded in 8bit or 4bit
if cfg.load_in_8bit:
raise ValueError("Can't merge qlora if loaded in 8bit")
if cfg.gptq:
raise ValueError("Can't merge qlora if gptq")
if cfg.load_in_4bit:
raise ValueError("Can't merge qlora if loaded in 4bit")
else:
if cfg.load_in_8bit:
raise ValueError("Can't load qlora in 8bit")
if cfg.gptq:
raise ValueError("Can't load qlora if gptq")
if not cfg.load_in_4bit:
raise ValueError("Require cfg.load_in_4bit to be True for qlora")
if not cfg.load_in_8bit and cfg.adapter == "lora":
logging.warning("We recommend setting `load_in_8bit: true` for LORA finetuning")
if cfg.trust_remote_code:
logging.warning(
"`trust_remote_code` is set to true. Please make sure that you reviewed the remote code/model."
)
if cfg.push_dataset_to_hub and cfg.hf_use_auth_token is not True:
raise ValueError(
"Require cfg.hf_use_auth_token to be True for push_dataset_to_hub"
)
if (cfg.base_model and "falcon" in cfg.base_model.lower()) and cfg.fsdp:
raise ValueError("FSDP is not supported for falcon models")
if (
cfg.base_model and "mpt" in cfg.base_model.lower()
) and cfg.gradient_checkpointing:
raise ValueError("gradient_checkpointing is not supported for MPT models")
if cfg.flash_optimum is True:
if cfg.adapter:
logging.warning(
"BetterTransformers probably doesn't work with PEFT adapters"
)
if cfg.fp16 or cfg.bf16:
raise ValueError("AMP is not supported with BetterTransformer")
if cfg.float16 is not True and cfg.bloat16 is not True:
logging.warning(
"You should probably set bfloat16 or float16 to true to "
"load the model in float16 for BetterTransformers"
)
if int(torch.__version__.split(".")[0]) < 2:
logging.warning("torch>=2.0.0 required")
raise ValueError(
f"flash_optimum for BetterTransformers may not be used with {torch.__version__}"
)
if cfg.pretraining_dataset and cfg.group_by_length:
logging.warning(
"You probably want to disable group_by_length as it will force a streamed dataset to download completely."
)
if any([cfg.adam_beta1, cfg.adam_beta2, cfg.adam_epsilon]) and (
not cfg.optimizer or "adamw" not in cfg.optimizer
):
logging.warning("adamw hyperparameters found, but no adamw optimizer set")
if cfg.push_to_hub_model_id:
raise ValueError(
"push_to_hub_model_id is deprecated. Please use hub_model_id instead."
)
# TODO
# MPT 7b
# https://github.com/facebookresearch/bitsandbytes/issues/25
# no 8bit adaAmw w bf16
# GPT-NeoX
# evals broken when extending context len
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/transformers/models/gpt_neox/modeling_gpt_neox.py", line 162, in forward attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
# File "/root/miniconda3/envs/py3.9/lib/python3.9/site-packages/optimum/bettertransformer/models/attention.py", line 74, in gpt2_wrapped_scaled_dot_product
# attention_mask = causal_mask + attention_mask
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (8132) at non-singleton dimension 3
|