tmm1's picture
standardize attn hijack patches (#381)
06edf17 unverified
raw
history blame
19.3 kB
"""Module for models and model loading"""
import logging
import math
import os
from pathlib import Path
from typing import TYPE_CHECKING, Optional, Tuple # noqa: F401
import bitsandbytes as bnb
import torch
import transformers
from optimum.bettertransformer import BetterTransformer
from transformers import ( # noqa: F401
AutoConfig,
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
LlamaConfig,
PreTrainedModel,
PreTrainedTokenizerBase,
)
from axolotl.prompt_tokenizers import LLAMA_DEFAULT_PAD_TOKEN
from axolotl.utils.bench import log_gpu_memory_usage
LOG = logging.getLogger("axolotl")
if TYPE_CHECKING:
from peft import PeftConfig # noqa: F401
from axolotl.utils.dict import DictDefault # noqa: F401
def load_tokenizer(cfg):
tokenizer_kwargs = {}
use_fast = True # this is the default
if cfg.tokenizer_use_fast is not None:
use_fast = cfg.tokenizer_use_fast
if cfg.tokenizer_legacy is not None:
# True is the default w/ https://github.com/huggingface/transformers/pull/25224
tokenizer_kwargs["legacy"] = cfg.tokenizer_legacy
tokenizer_cls = AutoTokenizer
if cfg.tokenizer_type:
tokenizer_cls = getattr(transformers, cfg.tokenizer_type)
tokenizer_config = cfg.tokenizer_config or cfg.base_model_config
tokenizer = tokenizer_cls.from_pretrained(
tokenizer_config,
trust_remote_code=cfg.trust_remote_code or False,
use_fast=use_fast,
**tokenizer_kwargs,
)
if tokenizer.__class__.__name__ in [
"LlamaTokenizer",
"LlamaTokenizerFast",
]:
tokenizer.pad_token = LLAMA_DEFAULT_PAD_TOKEN
LOG.debug(f"EOS: {tokenizer.eos_token_id} / {tokenizer.eos_token}")
LOG.debug(f"BOS: {tokenizer.bos_token_id} / {tokenizer.bos_token}")
LOG.debug(f"PAD: {tokenizer.pad_token_id} / {tokenizer.pad_token}")
LOG.debug(f"UNK: {tokenizer.unk_token_id} / {tokenizer.unk_token}")
if tokenizer.__class__.__name__ == "GPTNeoXTokenizerFast":
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
os.environ["TOKENIZERS_PARALLELISM"] = "false"
if cfg.special_tokens:
for k, val in cfg.special_tokens.items():
tokenizer.add_special_tokens({k: val})
if cfg.tokens:
tokenizer.add_tokens(list(cfg.tokens))
return tokenizer
def load_model(
cfg, tokenizer
): # type: (DictDefault, PreTrainedTokenizerBase) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
"""
Load a model for a given configuration and tokenizer.
"""
base_model = cfg.base_model
base_model_config = cfg.base_model_config
model_type = cfg.model_type
# TODO refactor as a kwarg
load_in_8bit = cfg.load_in_8bit
cfg.is_llama_derived_model = (
"llama" in base_model
or (cfg.model_type and "llama" in cfg.model_type.lower())
or cfg.is_llama_derived_model
)
if cfg.is_llama_derived_model and cfg.flash_attention:
if cfg.device not in ["mps", "cpu"] and not cfg.inference:
from axolotl.monkeypatch.llama_attn_hijack_flash import (
replace_llama_attn_with_flash_attn,
)
LOG.info("patching with flash attention")
replace_llama_attn_with_flash_attn(packed=cfg.sample_packing)
elif cfg.is_llama_derived_model and cfg.xformers_attention:
from axolotl.monkeypatch.llama_attn_hijack_xformers import (
hijack_llama_attention,
)
LOG.info("patching with xformers attention")
hijack_llama_attention()
elif cfg.is_llama_derived_model and cfg.sdp_attention:
from axolotl.monkeypatch.llama_attn_hijack_sdp import hijack_llama_sdp_attention
LOG.info("patching with sdp attention")
hijack_llama_sdp_attention()
elif cfg.is_llama_derived_model and cfg.landmark_attention:
from axolotl.monkeypatch.llama_landmark_attn import (
MEM_TOKEN,
patch_llama_with_landmark_attn,
)
LOG.info("patching with landmark attention")
patch_llama_with_landmark_attn()
# Note: This might overwrite previous additional_special_tokens
tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
if cfg.is_llama_derived_model and cfg.xpos_rope:
from axolotl.monkeypatch.xpos_rope_llama_monkey_patch import (
replace_llama_rope_with_xpos_rope,
)
LOG.info("patching with xpos rope")
replace_llama_rope_with_xpos_rope()
if (
cfg.is_llama_derived_model
and (cfg.max_packed_sequence_len or cfg.sample_packing)
and not cfg.inference
):
from axolotl.monkeypatch.llama_expand_mask import hijack_expand_mask
LOG.info("patching _expand_mask")
hijack_expand_mask()
if cfg.bf16 or cfg.bfloat16:
torch_dtype = torch.bfloat16
elif cfg.load_in_8bit or cfg.fp16 or cfg.float16:
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
try:
if cfg.gptq:
from alpaca_lora_4bit.monkeypatch.peft_tuners_lora_monkey_patch import (
replace_peft_model_with_int4_lora_model,
)
replace_peft_model_with_int4_lora_model()
except Exception as err:
LOG.exception(err)
raise err
if not cfg.gptq and (
(cfg.adapter == "lora" and load_in_8bit)
or (cfg.adapter == "qlora" and cfg.load_in_4bit)
):
try:
from peft import prepare_model_for_kbit_training
except ImportError:
# For backward compatibility
from peft import (
prepare_model_for_int8_training as prepare_model_for_kbit_training,
)
model_kwargs = {}
if cfg.model_revision:
model_kwargs["revision"] = cfg.model_revision
if cfg.adapter == "qlora" and cfg.load_in_4bit:
model_kwargs["quantization_config"] = BitsAndBytesConfig(
load_in_4bit=True,
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
)
try:
if cfg.gptq and cfg.is_llama_derived_model:
from alpaca_lora_4bit.autograd_4bit import load_llama_model_4bit_low_ram
from huggingface_hub import snapshot_download
try:
snapshot_download_kwargs = {}
if cfg.base_model_ignore_patterns:
snapshot_download_kwargs[
"ignore_patterns"
] = cfg.base_model_ignore_patterns
cache_model_path = Path(
snapshot_download(base_model, **snapshot_download_kwargs)
)
files = (
list(cache_model_path.glob("*.pt"))
+ list(cache_model_path.glob("*.safetensors"))
+ list(cache_model_path.glob("*.bin"))
)
if len(files) > 0:
model_path = str(files[0])
else:
LOG.warning(
"unable to find a cached model file, this will likely fail..."
)
model_path = str(cache_model_path)
except Exception: # pylint: disable=broad-exception-caught
model_path = cfg.base_model
model, _ = load_llama_model_4bit_low_ram(
base_model_config if base_model_config else base_model,
model_path,
device_map=cfg.device_map,
half=cfg.fp16,
groupsize=cfg.gptq_groupsize if cfg.gptq_groupsize else -1,
is_v1_model=cfg.gptq_model_v1
if cfg.gptq_model_v1 is not None
else True,
)
load_in_8bit = False
elif cfg.is_llama_derived_model and not cfg.trust_remote_code:
from transformers import LlamaForCausalLM
config_kwargs = {}
if cfg.rope_scaling:
config_kwargs["rope_scaling"] = cfg.rope_scaling
config = LlamaConfig.from_pretrained(
base_model_config,
**config_kwargs,
)
model = LlamaForCausalLM.from_pretrained(
base_model,
config=config,
device_map=cfg.device_map,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
**model_kwargs,
)
# elif model_type == "GPTNeoXForCausalLM" and cfg.flash_attention:
# This is a WIP, still an issue with the backward pass
# RuntimeError: grad can be implicitly created only for scalar outputs
# TODO: try config.sequence_parallel = False
# # https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/tests/models/test_gpt_neox.py#L12
# # https://github.com/HazyResearch/flash-attention/tree/main/training#model-components
# # add `**kwargs` to https://github.com/HazyResearch/flash-attention/blob/40a25c8ee7465cf547b929cfa2937034e37bfce9/flash_attn/models/gpt.py#L442
# from flash_attn.utils.pretrained import state_dict_from_pretrained
# from flash_attn.models.gpt import GPTLMHeadModel
# from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox, gpt_neox_config_to_gpt2_config
# from transformers import GPTNeoXConfig
# config = gpt_neox_config_to_gpt2_config(GPTNeoXConfig.from_pretrained(base_model))
# config.use_flash_attn = True
# config.fused_bias_fc = True
# config.fused_mlp = True # GPT-NeoX-20B uses "gelu_fast"
# config.activation_function = "gelu_fast"
# config.fused_dropout_add_ln = True
# # config.residual_in_fp32 = True
#
# model: GPTLMHeadModel = GPTLMHeadModel.from_pretrained(
# base_model,
# config,
# dtype=torch_dtype,
# device=cfg.device,
# )
# model.train() # sets to train instead of eval mode
elif model_type and not cfg.trust_remote_code:
model = getattr(transformers, model_type).from_pretrained(
base_model,
device_map=cfg.device_map,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
else:
config = AutoConfig.from_pretrained(
base_model,
trust_remote_code=cfg.trust_remote_code or False,
)
# Shouldn't be a problem most of the time. will obviously error if the model doesn't support this
# when training starts
if (
hasattr(config, "max_seq_len")
and config.max_seq_len
and cfg.sequence_len > config.max_seq_len
):
config.max_seq_len = cfg.sequence_len
LOG.warning(f"increasing context length to {cfg.sequence_len}")
elif (
hasattr(config, "max_sequence_length")
and config.max_sequence_length
and cfg.sequence_len > config.max_sequence_length
):
config.max_sequence_length = cfg.sequence_len
LOG.warning(f"increasing context length to {cfg.sequence_len}")
model = AutoModelForCausalLM.from_pretrained(
base_model,
config=config,
device_map=cfg.device_map,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
except Exception as err: # pylint: disable=broad-exception-caught
LOG.error(
"Exception raised attempting to load model, retrying with AutoModelForCausalLM"
)
LOG.exception(err)
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map=cfg.device_map,
load_in_8bit=cfg.load_in_8bit and cfg.adapter is not None,
load_in_4bit=cfg.load_in_4bit and cfg.adapter is not None,
torch_dtype=torch_dtype,
trust_remote_code=cfg.trust_remote_code or False,
**model_kwargs,
)
embeddings_len = (
math.ceil(len(tokenizer) / 32) * 32
if cfg.resize_token_embeddings_to_32x
else len(tokenizer)
)
model.resize_token_embeddings(embeddings_len)
if (
hasattr(model.config, "max_position_embeddings")
and model.config.max_position_embeddings
and cfg.sequence_len >= model.config.max_position_embeddings
):
LOG.warning(
f"increasing model.config.max_position_embeddings to {cfg.sequence_len}"
)
model.config.max_position_embeddings = cfg.sequence_len
if model.device.type == "cuda":
log_gpu_memory_usage(LOG, "after model load", model.device)
if not cfg.gptq and (
(cfg.adapter == "lora" and load_in_8bit)
or (cfg.adapter == "qlora" and cfg.load_in_4bit)
):
LOG.info("converting PEFT model w/ prepare_model_for_kbit_training")
model = prepare_model_for_kbit_training(
model, use_gradient_checkpointing=cfg.gradient_checkpointing
)
# LlamaRMSNorm layers are in fp32 after kbit_training, so we need to
# convert them back to fp16/bf16 for flash-attn compatibility.
if cfg.flash_attention and cfg.is_llama_derived_model:
for name, module in model.named_modules():
if "norm" in name:
module.to(torch_dtype)
if "lm_head" in name or "embed_tokens" in name:
if hasattr(module, "weight"):
module.to(torch_dtype)
model, lora_config = load_adapter(model, cfg, cfg.adapter)
if cfg.ddp and not load_in_8bit:
model.to(f"cuda:{cfg.local_rank}")
if cfg.gptq:
# Scales to half
LOG.info("Fitting 4bit scales and zeros to half")
for _, module in model.named_modules():
if "Autograd4bitQuantLinear" in str(type(module)) or "Linear4bitLt" in str(
type(module)
):
if hasattr(module, "is_v1_model") and module.is_v1_model:
module.zeros = module.zeros.half()
module.scales = module.scales.half()
module.bias = module.bias.half()
if (
torch.cuda.device_count() > 1
and int(os.getenv("WORLD_SIZE", "1")) > 1
and (cfg.gptq or cfg.load_in_4bit)
):
# llama is PROBABLY model parallelizable, but the default isn't that it is
# so let's only set it for the 4bit, see
# https://github.com/johnsmith0031/alpaca_lora_4bit/blob/08b3fca4a4a9e0d3945be1bab4529f100a428636/finetune.py#L130-L133
setattr(model, "is_parallelizable", True)
setattr(model, "model_parallel", True)
requires_grad = []
for name, param in model.named_parameters(recurse=True):
if param.requires_grad:
requires_grad.append(f"{name}: {param.requires_grad}")
if len(requires_grad) == 0:
LOG.warning("there are no parameters that require gradient updates")
model.config.use_cache = False
if cfg.flash_optimum:
model = BetterTransformer.transform(model)
if cfg.adapter is not None:
log_gpu_memory_usage(LOG, "after adapters", model.device)
# TODO resume_from_checkpoint handling
return model, lora_config
def load_adapter(model, cfg, adapter):
# type: (PreTrainedModel, DictDefault, Optional[str]) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
if adapter is None:
return model, None
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
if adapter in ["lora", "qlora"]:
return load_lora(model, cfg)
if adapter == "llama-adapter":
return load_llama_adapter(model, cfg)
raise NotImplementedError(f"{adapter} peft adapter not available")
def load_llama_adapter(model, cfg):
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import AdaptionPromptConfig, PeftModel, get_peft_model
peft_config = AdaptionPromptConfig(
adapter_layers=cfg.peft_adapter.layers, # layers (L)
adapter_len=cfg.peft_adapter.len, # prompt length (K)
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
LOG.info("Loading pretained LORA")
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
torch_dtype=torch.float16,
)
else:
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
return model, peft_config
def find_all_linear_names(bits, model):
cls = (
bnb.nn.Linear4bit
if bits == 4
else (bnb.nn.Linear8bitLt if bits == 8 else torch.nn.Linear)
)
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split(".")
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if "lm_head" in lora_module_names: # needed for 16-bit
lora_module_names.remove("lm_head")
return list(lora_module_names)
def load_lora(model, cfg):
# type: (PreTrainedModel, DictDefault) -> Tuple[PreTrainedModel, Optional[PeftConfig]]
from peft import LoraConfig, PeftModel, get_peft_model
lora_target_modules = list(cfg.lora_target_modules or [])
if cfg.lora_target_linear:
bits = None
if cfg.load_in_4bit:
bits = 4
elif cfg.load_in_8bit:
bits = 8
linear_names = find_all_linear_names(bits, model)
LOG.info(f"found linear modules: {repr(linear_names)}")
lora_target_modules = list(set(lora_target_modules + linear_names))
lora_config = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
target_modules=lora_target_modules,
lora_dropout=cfg.lora_dropout,
fan_in_fan_out=cfg.lora_fan_in_fan_out,
modules_to_save=cfg.lora_modules_to_save if cfg.lora_modules_to_save else None,
bias="none",
task_type="CAUSAL_LM",
)
if cfg.lora_model_dir:
model = PeftModel.from_pretrained(
model,
cfg.lora_model_dir,
is_trainable=not cfg.inference,
)
else:
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
return model, lora_config