File size: 2,443 Bytes
e303d64 196ff11 e303d64 2414673 e303d64 196ff11 03e5907 eaaeefc 03e5907 9b6ee83 03e5907 196ff11 7b55fe6 196ff11 7b55fe6 fac2d98 196ff11 7b55fe6 e303d64 2414673 e303d64 fac2d98 7b55fe6 e303d64 7b55fe6 e303d64 7b55fe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
"""Benchmarking and measurement utilities"""
import functools
import pynvml
import torch
from pynvml.nvml import NVMLError
def check_cuda_device(default_value):
"""
wraps a function and returns the default value instead of running the
wrapped function if cuda isn't available or the device is auto
:param default_value:
:return:
"""
def deco(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
device = kwargs.get("device", args[0] if args else None)
if (
device is None
or not torch.cuda.is_available()
or device == "auto"
or torch.device(device).type == "cpu"
or torch.device(device).type == "meta"
):
return default_value
return func(*args, **kwargs)
return wrapper
return deco
@check_cuda_device(0.0)
def gpu_memory_usage(device=0):
return torch.cuda.memory_allocated(device) / 1024.0**3
@check_cuda_device((0.0, 0.0, 0.0))
def gpu_memory_usage_all(device=0):
usage = torch.cuda.memory_allocated(device) / 1024.0**3
reserved = torch.cuda.memory_reserved(device) / 1024.0**3
smi = gpu_memory_usage_smi(device)
return usage, reserved - usage, max(0, smi - reserved)
def mps_memory_usage_all():
usage = torch.mps.current_allocated_memory() / 1024.0**3
reserved = torch.mps.driver_allocated_memory() / 1024.0**3
return usage, reserved - usage, 0
@check_cuda_device(0.0)
def gpu_memory_usage_smi(device=0):
if isinstance(device, torch.device):
device = device.index
if isinstance(device, str) and device.startswith("cuda:"):
device = int(device[5:])
try:
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(device)
info = pynvml.nvmlDeviceGetMemoryInfo(handle)
return info.used / 1024.0**3
except NVMLError:
return 0.0
def log_gpu_memory_usage(log, msg, device):
if torch.backends.mps.is_available():
usage, cache, misc = mps_memory_usage_all()
else:
usage, cache, misc = gpu_memory_usage_all(device)
extras = []
if cache > 0:
extras.append(f"+{cache:.03f}GB cache")
if misc > 0:
extras.append(f"+{misc:.03f}GB misc")
log.info(
f"GPU memory usage {msg}: {usage:.03f}GB ({', '.join(extras)})", stacklevel=2
)
return usage, cache, misc
|