Maxime winglian commited on
Commit
fac2d98
·
unverified ·
1 Parent(s): ea00dd0

Add MPS support (#1264)

Browse files

* add mps support

* linter stuff

* CI fixes

* install packaging for various tests

* Update setup.py

* Revert "install packaging for various tests"

This reverts commit 980e7aa44d667b9cbbfe01b9743edb00d0ac447b.

* Revert "CI fixes"

This reverts commit 4609e3b166ff0ce8e926f39d541aa7ef76592ec4.

---------

Co-authored-by: Wing Lian <[email protected]>

examples/tiny-llama/lora-mps.yml ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
2
+ model_type: LlamaForCausalLM
3
+ tokenizer_type: LlamaTokenizer
4
+ is_llama_derived_model: true
5
+
6
+ load_in_8bit: true
7
+ load_in_4bit: false
8
+ strict: false
9
+
10
+ datasets:
11
+ - path: mhenrichsen/alpaca_2k_test
12
+ type: alpaca
13
+ dataset_prepared_path:
14
+ val_set_size: 0
15
+ output_dir: ./lora-out
16
+
17
+ sequence_len: 4096
18
+ sample_packing: true
19
+ pad_to_sequence_len: true
20
+ eval_sample_packing: false
21
+
22
+ adapter: lora
23
+ lora_model_dir:
24
+ lora_r: 32
25
+ lora_alpha: 16
26
+ lora_dropout: 0.05
27
+ lora_target_linear: true
28
+ lora_fan_in_fan_out:
29
+
30
+ wandb_project:
31
+ wandb_entity:
32
+ wandb_watch:
33
+ wandb_name:
34
+ wandb_log_model:
35
+
36
+ gradient_accumulation_steps: 4
37
+ micro_batch_size: 2
38
+ num_epochs: 4
39
+ optimizer: adamw_torch
40
+ lr_scheduler: cosine
41
+ learning_rate: 0.0002
42
+
43
+ train_on_inputs: false
44
+ group_by_length: false
45
+ bf16: auto
46
+ fp16: false
47
+ tf32: true
48
+
49
+ gradient_checkpointing: true
50
+ early_stopping_patience:
51
+ resume_from_checkpoint:
52
+ local_rank:
53
+ logging_steps: 1
54
+ xformers_attention:
55
+ flash_attention: false
56
+
57
+ warmup_steps: 10
58
+ evals_per_epoch: 0
59
+ saves_per_epoch: 1
60
+ debug:
61
+ deepspeed:
62
+ weight_decay: 0.0
63
+ fsdp:
64
+ fsdp_config:
65
+ special_tokens:
setup.py CHANGED
@@ -1,5 +1,7 @@
1
  """setup.py for axolotl"""
2
 
 
 
3
  from importlib.metadata import PackageNotFoundError, version
4
 
5
  from setuptools import find_packages, setup
@@ -26,11 +28,25 @@ def parse_requirements():
26
  _install_requires.append(line)
27
 
28
  try:
29
- torch_version = version("torch")
30
- _install_requires.append(f"torch=={torch_version}")
31
- if torch_version.startswith("2.1."):
32
  _install_requires.pop(_install_requires.index("xformers==0.0.22"))
33
- _install_requires.append("xformers>=0.0.23")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  except PackageNotFoundError:
35
  pass
36
 
 
1
  """setup.py for axolotl"""
2
 
3
+ import platform
4
+ import re
5
  from importlib.metadata import PackageNotFoundError, version
6
 
7
  from setuptools import find_packages, setup
 
28
  _install_requires.append(line)
29
 
30
  try:
31
+ if "Darwin" in platform.system():
 
 
32
  _install_requires.pop(_install_requires.index("xformers==0.0.22"))
33
+ else:
34
+ torch_version = version("torch")
35
+ _install_requires.append(f"torch=={torch_version}")
36
+
37
+ version_match = re.match(r"^(\d+)\.(\d+)(?:\.(\d+))?", torch_version)
38
+ if version_match:
39
+ major, minor, patch = version_match.groups()
40
+ major, minor = int(major), int(minor)
41
+ patch = (
42
+ int(patch) if patch is not None else 0
43
+ ) # Default patch to 0 if not present
44
+ else:
45
+ raise ValueError("Invalid version format")
46
+
47
+ if (major, minor) >= (2, 1):
48
+ _install_requires.pop(_install_requires.index("xformers==0.0.22"))
49
+ _install_requires.append("xformers>=0.0.23")
50
  except PackageNotFoundError:
51
  pass
52
 
src/axolotl/monkeypatch/utils.py CHANGED
@@ -186,8 +186,8 @@ def mask_2d_to_4d(
186
  # Create a binary mask from the original mask where zeros remain zeros and all other values are set to one
187
  binary_mask = torch.where(
188
  mask != 0,
189
- torch.tensor(1).to(dtype),
190
- torch.tensor(0).to(dtype),
191
  )
192
 
193
  # Create a block-diagonal mask.
 
186
  # Create a binary mask from the original mask where zeros remain zeros and all other values are set to one
187
  binary_mask = torch.where(
188
  mask != 0,
189
+ torch.tensor(1, device=mask.device).to(dtype),
190
+ torch.tensor(0, device=mask.device).to(dtype),
191
  )
192
 
193
  # Create a block-diagonal mask.
src/axolotl/utils/bench.py CHANGED
@@ -47,6 +47,12 @@ def gpu_memory_usage_all(device=0):
47
  return usage, reserved - usage, max(0, smi - reserved)
48
 
49
 
 
 
 
 
 
 
50
  @check_cuda_device(0.0)
51
  def gpu_memory_usage_smi(device=0):
52
  if isinstance(device, torch.device):
@@ -63,7 +69,10 @@ def gpu_memory_usage_smi(device=0):
63
 
64
 
65
  def log_gpu_memory_usage(log, msg, device):
66
- usage, cache, misc = gpu_memory_usage_all(device)
 
 
 
67
  extras = []
68
  if cache > 0:
69
  extras.append(f"+{cache:.03f}GB cache")
 
47
  return usage, reserved - usage, max(0, smi - reserved)
48
 
49
 
50
+ def mps_memory_usage_all():
51
+ usage = torch.mps.current_allocated_memory() / 1024.0**3
52
+ reserved = torch.mps.driver_allocated_memory() / 1024.0**3
53
+ return usage, reserved - usage, 0
54
+
55
+
56
  @check_cuda_device(0.0)
57
  def gpu_memory_usage_smi(device=0):
58
  if isinstance(device, torch.device):
 
69
 
70
 
71
  def log_gpu_memory_usage(log, msg, device):
72
+ if torch.backends.mps.is_available():
73
+ usage, cache, misc = mps_memory_usage_all()
74
+ else:
75
+ usage, cache, misc = gpu_memory_usage_all(device)
76
  extras = []
77
  if cache > 0:
78
  extras.append(f"+{cache:.03f}GB cache")
src/axolotl/utils/models.py CHANGED
@@ -409,6 +409,10 @@ def load_model(
409
 
410
  model_kwargs["device_map"] = device_map
411
  model_kwargs["torch_dtype"] = cfg.torch_dtype
 
 
 
 
412
  # TODO can we put the reference model on it's own gpu? I think we have to move logits around to calculate loss
413
  # if cfg.rl:
414
  # if torch.cuda.device_count() > 1:
@@ -651,7 +655,7 @@ def load_model(
651
  ):
652
  model.config.eos_token_id = tokenizer.eos_token_id
653
 
654
- if hasattr(model, "device") and model.device.type == "cuda":
655
  log_gpu_memory_usage(LOG, "after model load", model.device)
656
 
657
  # make sure these are fp32 per Ramesh et al. (2021)
 
409
 
410
  model_kwargs["device_map"] = device_map
411
  model_kwargs["torch_dtype"] = cfg.torch_dtype
412
+
413
+ if torch.backends.mps.is_available():
414
+ model_kwargs["device_map"] = "mps:0"
415
+
416
  # TODO can we put the reference model on it's own gpu? I think we have to move logits around to calculate loss
417
  # if cfg.rl:
418
  # if torch.cuda.device_count() > 1:
 
655
  ):
656
  model.config.eos_token_id = tokenizer.eos_token_id
657
 
658
+ if hasattr(model, "device") and model.device.type in ("cuda", "mps"):
659
  log_gpu_memory_usage(LOG, "after model load", model.device)
660
 
661
  # make sure these are fp32 per Ramesh et al. (2021)