File size: 4,181 Bytes
697c50d 788649f 697c50d c74f045 788649f 697c50d 788649f 697c50d 788649f 697c50d 0402d19 6dc68a6 697c50d 788649f 697c50d 788649f 697c50d 0f985e1 697c50d 788649f 697c50d 6dc68a6 697c50d 788649f 697c50d 6dc68a6 697c50d 788649f 0402d19 788649f 697c50d 788649f 697c50d 788649f 697c50d 788649f 697c50d 6dc68a6 697c50d 788649f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
"""
E2E tests for lora llama
"""
import logging
import os
import unittest
from pathlib import Path
import pytest
from transformers.utils import is_auto_gptq_available, is_torch_bf16_gpu_available
from axolotl.cli import load_datasets
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
from axolotl.utils.config import normalize_config
from axolotl.utils.dict import DictDefault
from ..utils import with_temp_dir
LOG = logging.getLogger("axolotl.tests.e2e")
os.environ["WANDB_DISABLED"] = "true"
class TestLoraLlama(unittest.TestCase):
"""
Test case for Llama models using LoRA w multipack
"""
@with_temp_dir
def test_lora_packing(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "JackFram/llama-68m",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"sample_packing": True,
"flash_attention": True,
"load_in_8bit": True,
"adapter": "lora",
"lora_r": 32,
"lora_alpha": 64,
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.2,
"special_tokens": {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"micro_batch_size": 8,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
}
)
if is_torch_bf16_gpu_available():
cfg.bf16 = True
else:
cfg.fp16 = True
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()
@pytest.mark.skipif(not is_auto_gptq_available(), reason="auto-gptq not available")
@with_temp_dir
def test_lora_gptq_packed(self, temp_dir):
# pylint: disable=duplicate-code
cfg = DictDefault(
{
"base_model": "TheBlokeAI/jackfram_llama-68m-GPTQ",
"model_type": "AutoModelForCausalLM",
"tokenizer_type": "LlamaTokenizer",
"sequence_len": 1024,
"sample_packing": True,
"flash_attention": True,
"load_in_8bit": True,
"adapter": "lora",
"gptq": True,
"gptq_disable_exllama": True,
"lora_r": 32,
"lora_alpha": 64,
"lora_dropout": 0.05,
"lora_target_linear": True,
"val_set_size": 0.1,
"special_tokens": {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
},
"datasets": [
{
"path": "mhenrichsen/alpaca_2k_test",
"type": "alpaca",
},
],
"num_epochs": 2,
"save_steps": 0.5,
"micro_batch_size": 8,
"gradient_accumulation_steps": 1,
"output_dir": temp_dir,
"learning_rate": 0.00001,
"optimizer": "adamw_torch",
"lr_scheduler": "cosine",
}
)
normalize_config(cfg)
cli_args = TrainerCliArgs()
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
assert (Path(temp_dir) / "adapter_model.bin").exists()
|