Feat: Allow usage of native Mistral FA when no sample_packing (#669)
Browse files* Allow usage of native Mistral FA when no sample_packing
* fix: do not apply custom patch when sample_pack off
* chore: lint
* chore: pin transformer to v4.35.0.dev0
* fix: split sample_packing to separate test
- requirements.txt +1 -1
- src/axolotl/utils/models.py +6 -2
- tests/e2e/test_mistral.py +0 -92
- tests/e2e/test_mistral_samplepack.py +118 -0
requirements.txt
CHANGED
@@ -4,7 +4,7 @@ torch==2.0.1
|
|
4 |
auto-gptq
|
5 |
packaging
|
6 |
peft @ git+https://github.com/huggingface/peft.git
|
7 |
-
transformers @ git+https://github.com/huggingface/transformers.git@
|
8 |
bitsandbytes>=0.41.1
|
9 |
accelerate @ git+https://github.com/huggingface/accelerate@80da9cfb09bb3cc9f1b385cb55d6b90d025a5fd9
|
10 |
deepspeed
|
|
|
4 |
auto-gptq
|
5 |
packaging
|
6 |
peft @ git+https://github.com/huggingface/peft.git
|
7 |
+
transformers @ git+https://github.com/huggingface/transformers.git@bd6205919aad4d3a2300a39a98a642f1cc3a5348
|
8 |
bitsandbytes>=0.41.1
|
9 |
accelerate @ git+https://github.com/huggingface/accelerate@80da9cfb09bb3cc9f1b385cb55d6b90d025a5fd9
|
10 |
deepspeed
|
src/axolotl/utils/models.py
CHANGED
@@ -149,7 +149,7 @@ def load_model(
|
|
149 |
# Note: This might overwrite previous additional_special_tokens
|
150 |
tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
|
151 |
|
152 |
-
if cfg.is_mistral_derived_model and cfg.flash_attention:
|
153 |
from axolotl.monkeypatch.mistral_attn_hijack_flash import (
|
154 |
replace_mistral_attn_with_flash_attn,
|
155 |
)
|
@@ -200,7 +200,11 @@ def load_model(
|
|
200 |
)
|
201 |
# sample packing uses custom FA2 patch
|
202 |
if cfg.flash_attention and not cfg.sample_packing:
|
203 |
-
if
|
|
|
|
|
|
|
|
|
204 |
model_kwargs["use_flash_attention_2"] = True
|
205 |
try:
|
206 |
if cfg.is_llama_derived_model and not cfg.trust_remote_code and not cfg.gptq:
|
|
|
149 |
# Note: This might overwrite previous additional_special_tokens
|
150 |
tokenizer.add_special_tokens({"additional_special_tokens": [MEM_TOKEN]})
|
151 |
|
152 |
+
if cfg.is_mistral_derived_model and cfg.flash_attention and cfg.sample_packing:
|
153 |
from axolotl.monkeypatch.mistral_attn_hijack_flash import (
|
154 |
replace_mistral_attn_with_flash_attn,
|
155 |
)
|
|
|
200 |
)
|
201 |
# sample packing uses custom FA2 patch
|
202 |
if cfg.flash_attention and not cfg.sample_packing:
|
203 |
+
if (
|
204 |
+
cfg.is_llama_derived_model
|
205 |
+
or cfg.is_falcon_derived_model
|
206 |
+
or cfg.is_mistral_derived_model
|
207 |
+
):
|
208 |
model_kwargs["use_flash_attention_2"] = True
|
209 |
try:
|
210 |
if cfg.is_llama_derived_model and not cfg.trust_remote_code and not cfg.gptq:
|
tests/e2e/test_mistral.py
CHANGED
@@ -71,53 +71,6 @@ class TestMistral(unittest.TestCase):
|
|
71 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
72 |
assert (Path(output_dir) / "adapter_model.bin").exists()
|
73 |
|
74 |
-
def test_lora_packing(self):
|
75 |
-
# pylint: disable=duplicate-code
|
76 |
-
output_dir = tempfile.mkdtemp()
|
77 |
-
cfg = DictDefault(
|
78 |
-
{
|
79 |
-
"base_model": "openaccess-ai-collective/tiny-mistral",
|
80 |
-
"base_model_config": "openaccess-ai-collective/tiny-mistral",
|
81 |
-
"flash_attention": True,
|
82 |
-
"sample_packing": True,
|
83 |
-
"sequence_len": 1024,
|
84 |
-
"load_in_8bit": True,
|
85 |
-
"adapter": "lora",
|
86 |
-
"lora_r": 32,
|
87 |
-
"lora_alpha": 64,
|
88 |
-
"lora_dropout": 0.05,
|
89 |
-
"lora_target_linear": True,
|
90 |
-
"val_set_size": 0.1,
|
91 |
-
"special_tokens": {
|
92 |
-
"unk_token": "<unk>",
|
93 |
-
"bos_token": "<s>",
|
94 |
-
"eos_token": "</s>",
|
95 |
-
},
|
96 |
-
"datasets": [
|
97 |
-
{
|
98 |
-
"path": "mhenrichsen/alpaca_2k_test",
|
99 |
-
"type": "alpaca",
|
100 |
-
},
|
101 |
-
],
|
102 |
-
"num_epochs": 2,
|
103 |
-
"micro_batch_size": 2,
|
104 |
-
"gradient_accumulation_steps": 1,
|
105 |
-
"output_dir": output_dir,
|
106 |
-
"learning_rate": 0.00001,
|
107 |
-
"optimizer": "adamw_torch",
|
108 |
-
"lr_scheduler": "cosine",
|
109 |
-
"max_steps": 20,
|
110 |
-
"save_steps": 10,
|
111 |
-
"eval_steps": 10,
|
112 |
-
}
|
113 |
-
)
|
114 |
-
normalize_config(cfg)
|
115 |
-
cli_args = TrainerCliArgs()
|
116 |
-
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
117 |
-
|
118 |
-
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
119 |
-
assert (Path(output_dir) / "adapter_model.bin").exists()
|
120 |
-
|
121 |
def test_ft(self):
|
122 |
# pylint: disable=duplicate-code
|
123 |
output_dir = tempfile.mkdtemp()
|
@@ -161,48 +114,3 @@ class TestMistral(unittest.TestCase):
|
|
161 |
|
162 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
163 |
assert (Path(output_dir) / "pytorch_model.bin").exists()
|
164 |
-
|
165 |
-
def test_ft_packing(self):
|
166 |
-
# pylint: disable=duplicate-code
|
167 |
-
output_dir = tempfile.mkdtemp()
|
168 |
-
cfg = DictDefault(
|
169 |
-
{
|
170 |
-
"base_model": "openaccess-ai-collective/tiny-mistral",
|
171 |
-
"base_model_config": "openaccess-ai-collective/tiny-mistral",
|
172 |
-
"flash_attention": True,
|
173 |
-
"sample_packing": True,
|
174 |
-
"sequence_len": 1024,
|
175 |
-
"val_set_size": 0.1,
|
176 |
-
"special_tokens": {
|
177 |
-
"unk_token": "<unk>",
|
178 |
-
"bos_token": "<s>",
|
179 |
-
"eos_token": "</s>",
|
180 |
-
},
|
181 |
-
"datasets": [
|
182 |
-
{
|
183 |
-
"path": "mhenrichsen/alpaca_2k_test",
|
184 |
-
"type": "alpaca",
|
185 |
-
},
|
186 |
-
],
|
187 |
-
"num_epochs": 2,
|
188 |
-
"micro_batch_size": 2,
|
189 |
-
"gradient_accumulation_steps": 1,
|
190 |
-
"output_dir": output_dir,
|
191 |
-
"learning_rate": 0.00001,
|
192 |
-
"optimizer": "adamw_torch",
|
193 |
-
"lr_scheduler": "cosine",
|
194 |
-
"max_steps": 20,
|
195 |
-
"save_steps": 10,
|
196 |
-
"eval_steps": 10,
|
197 |
-
}
|
198 |
-
)
|
199 |
-
if is_torch_bf16_gpu_available():
|
200 |
-
cfg.bf16 = True
|
201 |
-
else:
|
202 |
-
cfg.fp16 = True
|
203 |
-
normalize_config(cfg)
|
204 |
-
cli_args = TrainerCliArgs()
|
205 |
-
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
206 |
-
|
207 |
-
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
208 |
-
assert (Path(output_dir) / "pytorch_model.bin").exists()
|
|
|
71 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
72 |
assert (Path(output_dir) / "adapter_model.bin").exists()
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def test_ft(self):
|
75 |
# pylint: disable=duplicate-code
|
76 |
output_dir = tempfile.mkdtemp()
|
|
|
114 |
|
115 |
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
116 |
assert (Path(output_dir) / "pytorch_model.bin").exists()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tests/e2e/test_mistral_samplepack.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
E2E tests for lora llama
|
3 |
+
"""
|
4 |
+
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
import unittest
|
9 |
+
from pathlib import Path
|
10 |
+
|
11 |
+
from transformers.utils import is_torch_bf16_gpu_available
|
12 |
+
|
13 |
+
from axolotl.cli import load_datasets
|
14 |
+
from axolotl.common.cli import TrainerCliArgs
|
15 |
+
from axolotl.train import train
|
16 |
+
from axolotl.utils.config import normalize_config
|
17 |
+
from axolotl.utils.dict import DictDefault
|
18 |
+
|
19 |
+
LOG = logging.getLogger("axolotl.tests.e2e")
|
20 |
+
os.environ["WANDB_DISABLED"] = "true"
|
21 |
+
|
22 |
+
|
23 |
+
class TestMistral(unittest.TestCase):
|
24 |
+
"""
|
25 |
+
Test case for Llama models using LoRA
|
26 |
+
"""
|
27 |
+
|
28 |
+
def test_lora_packing(self):
|
29 |
+
# pylint: disable=duplicate-code
|
30 |
+
output_dir = tempfile.mkdtemp()
|
31 |
+
cfg = DictDefault(
|
32 |
+
{
|
33 |
+
"base_model": "openaccess-ai-collective/tiny-mistral",
|
34 |
+
"base_model_config": "openaccess-ai-collective/tiny-mistral",
|
35 |
+
"flash_attention": True,
|
36 |
+
"sample_packing": True,
|
37 |
+
"sequence_len": 1024,
|
38 |
+
"load_in_8bit": True,
|
39 |
+
"adapter": "lora",
|
40 |
+
"lora_r": 32,
|
41 |
+
"lora_alpha": 64,
|
42 |
+
"lora_dropout": 0.05,
|
43 |
+
"lora_target_linear": True,
|
44 |
+
"val_set_size": 0.1,
|
45 |
+
"special_tokens": {
|
46 |
+
"unk_token": "<unk>",
|
47 |
+
"bos_token": "<s>",
|
48 |
+
"eos_token": "</s>",
|
49 |
+
},
|
50 |
+
"datasets": [
|
51 |
+
{
|
52 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
53 |
+
"type": "alpaca",
|
54 |
+
},
|
55 |
+
],
|
56 |
+
"num_epochs": 2,
|
57 |
+
"micro_batch_size": 2,
|
58 |
+
"gradient_accumulation_steps": 1,
|
59 |
+
"output_dir": output_dir,
|
60 |
+
"learning_rate": 0.00001,
|
61 |
+
"optimizer": "adamw_torch",
|
62 |
+
"lr_scheduler": "cosine",
|
63 |
+
"max_steps": 20,
|
64 |
+
"save_steps": 10,
|
65 |
+
"eval_steps": 10,
|
66 |
+
}
|
67 |
+
)
|
68 |
+
normalize_config(cfg)
|
69 |
+
cli_args = TrainerCliArgs()
|
70 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
71 |
+
|
72 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
73 |
+
assert (Path(output_dir) / "adapter_model.bin").exists()
|
74 |
+
|
75 |
+
def test_ft_packing(self):
|
76 |
+
# pylint: disable=duplicate-code
|
77 |
+
output_dir = tempfile.mkdtemp()
|
78 |
+
cfg = DictDefault(
|
79 |
+
{
|
80 |
+
"base_model": "openaccess-ai-collective/tiny-mistral",
|
81 |
+
"base_model_config": "openaccess-ai-collective/tiny-mistral",
|
82 |
+
"flash_attention": True,
|
83 |
+
"sample_packing": True,
|
84 |
+
"sequence_len": 1024,
|
85 |
+
"val_set_size": 0.1,
|
86 |
+
"special_tokens": {
|
87 |
+
"unk_token": "<unk>",
|
88 |
+
"bos_token": "<s>",
|
89 |
+
"eos_token": "</s>",
|
90 |
+
},
|
91 |
+
"datasets": [
|
92 |
+
{
|
93 |
+
"path": "mhenrichsen/alpaca_2k_test",
|
94 |
+
"type": "alpaca",
|
95 |
+
},
|
96 |
+
],
|
97 |
+
"num_epochs": 2,
|
98 |
+
"micro_batch_size": 2,
|
99 |
+
"gradient_accumulation_steps": 1,
|
100 |
+
"output_dir": output_dir,
|
101 |
+
"learning_rate": 0.00001,
|
102 |
+
"optimizer": "adamw_torch",
|
103 |
+
"lr_scheduler": "cosine",
|
104 |
+
"max_steps": 20,
|
105 |
+
"save_steps": 10,
|
106 |
+
"eval_steps": 10,
|
107 |
+
}
|
108 |
+
)
|
109 |
+
if is_torch_bf16_gpu_available():
|
110 |
+
cfg.bf16 = True
|
111 |
+
else:
|
112 |
+
cfg.fp16 = True
|
113 |
+
normalize_config(cfg)
|
114 |
+
cli_args = TrainerCliArgs()
|
115 |
+
dataset_meta = load_datasets(cfg=cfg, cli_args=cli_args)
|
116 |
+
|
117 |
+
train(cfg=cfg, cli_args=cli_args, dataset_meta=dataset_meta)
|
118 |
+
assert (Path(output_dir) / "pytorch_model.bin").exists()
|