File size: 11,574 Bytes
5cb7ea4 db73b94 afb31e1 db73b94 5cb7ea4 d5f944c e9da4b9 ba9ac72 db73b94 3f6017d db73b94 85326bf db73b94 ba9ac72 85326bf ba9ac72 db73b94 ba9ac72 e9da4b9 04d2813 3f6017d 04d2813 9aab0b8 04d2813 9aab0b8 04d2813 cba0048 04d2813 9aab0b8 04d2813 db73b94 e1a91b0 db73b94 857a80b c22df8d 857a80b c22df8d 857a80b c22df8d 857a80b c22df8d 7bc28eb f92245d 7bc28eb 04d2813 ba9ac72 db73b94 9aab0b8 04d2813 db73b94 04d2813 68237ea 04d2813 db73b94 5417824 04d2813 a9e502e 04d2813 e65c203 04d2813 e65c203 04d2813 68237ea 04d2813 9083910 04d2813 0a472e1 04d2813 0a472e1 04d2813 0a472e1 362821c 04d2813 a9e502e dd00657 04d2813 0a472e1 a9e502e 04d2813 e65c203 04d2813 e65c203 04d2813 0a472e1 2c34f8d db73b94 60e32ff db73b94 0a472e1 2b43668 1c33eb8 0a472e1 8626b54 04d2813 0a472e1 04d2813 9083910 04d2813 0a472e1 04d2813 0a472e1 04d2813 9196237 04d2813 c22df8d 0a472e1 04d2813 29273b5 0a472e1 04d2813 4ee79f2 0a472e1 04d2813 0a472e1 0e74b64 0a472e1 04d2813 0a472e1 04d2813 0a472e1 04d2813 0a472e1 05c1834 04d2813 0a472e1 e65c203 04d2813 0a472e1 04d2813 0a472e1 2b43668 04d2813 2b43668 f2a2029 04d2813 12de7b7 04d2813 29273b5 04d2813 29273b5 04d2813 9083910 d7d8bc7 12de7b7 04d2813 0a472e1 04d2813 0a472e1 3f6017d db73b94 ba9ac72 db73b94 0a472e1 04d2813 0a472e1 04d2813 0a472e1 04d2813 8552218 04d2813 8552218 0a472e1 bc97f9c 04d2813 ba9ac72 e7e1a77 ba9ac72 5417824 ba9ac72 1377400 e689069 71d600f 3f6017d e07bd8a ba9ac72 04d2813 bc97f9c afb31e1 b1cc54b afb31e1 b1cc54b afb31e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
# Axolotl
<div align="center">
<img src="image/axolotl.png" alt="axolotl" width="160">
<div>
<p>
<b>One repo to finetune them all! </b>
</p>
<p>
Go ahead and axolotl questions!!
</p>
<img src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/pre-commit.yml/badge.svg?branch=main" alt="pre-commit">
<img alt="PyTest Status" src="https://github.com/OpenAccess-AI-Collective/axolotl/actions/workflows/tests.yml/badge.svg?branch=main">
</div>
</div>
## Axolotl supports
| | fp16/fp32 | fp16/fp32 w/ lora | qlora | 4bit-quant | 4bit-quant w/flash attention | flash attention | xformers attention |
|---------|:----------|:------------------|------|------------|------------------------------|-----------------|--------------------|
| llama | β
| β
| β
| β
| β
| β
| β
|
| Pythia | β
| β
| β | β | β | β | β |
| cerebras | β
| β
| β | β | β | β | β |
| mpt | β
| β | β | β | β | β | β |
| falcon | β
| β | β | β | β | β | β |
## Quickstart β‘
**Requirements**: Python 3.9.
```bash
git clone https://github.com/OpenAccess-AI-Collective/axolotl
pip3 install -e .[int4]
accelerate config
# finetune lora
accelerate launch scripts/finetune.py examples/lora-openllama-3b/config.yml
# inference
accelerate launch scripts/finetune.py examples/lora-openllama-3b/config.yml \
--inference --lora_model_dir="./lora-out"
```
## Installation
### Environment
- Docker
```bash
docker run --gpus '"all"' --rm -it winglian/axolotl:main
```
- `winglian/axolotl:dev`: dev branch
- `winglian/axolotl-runpod:main`: for runpod
- Conda/Pip venv
1. Install python **3.9**
2. Install python dependencies with ONE of the following:
- `pip3 install -e .[int4]` (recommended)
- `pip3 install -e .[int4_triton]`
- `pip3 install -e .`
### Dataset
Have dataset(s) in one of the following format (JSONL recommended):
- `alpaca`: instruction; input(optional)
```json
{"instruction": "...", "input": "...", "output": "..."}
```
- `sharegpt`: conversations
```json
{"conversations": [{"from": "...", "value": "..."}]}
```
- `completion`: raw corpus
```json
{"text": "..."}
```
<details>
<summary>See other formats</summary>
- `jeopardy`: question and answer
```json
{"question": "...", "category": "...", "answer": "..."}
```
- `oasst`: instruction
```json
{"INSTRUCTION": "...", "RESPONSE": "..."}
```
- `gpteacher`: instruction; input(optional)
```json
{"instruction": "...", "input": "...", "response": "..."}
```
- `reflection`: instruction with reflect; input(optional)
```json
{"instruction": "...", "input": "...", "output": "...", "reflection": "...", "corrected": "..."}
```
- `explainchoice`: question, choices, (solution OR explanation)
```json
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
```
- `concisechoice`: question, choices, (solution OR explanation)
```json
{"question": "...", "choices": ["..."], "solution": "...", "explanation": "..."}
```
- `summarizetldr`: article and summary
```json
{"article": "...", "summary": "..."}
```
> Have some new format to propose? Check if it's already defined in [data.py](src/axolotl/utils/data.py) in `dev` branch!
</details>
Optionally, download some datasets, see [data/README.md](data/README.md)
### Config
See sample configs in [configs](configs) folder or [examples](examples) for quick start. It is recommended to duplicate and modify to your needs. The most important options are:
- model
```yaml
base_model: ./llama-7b-hf # local or huggingface repo
```
Note: The code will load the right architecture.
- dataset
```yaml
datasets:
- path: vicgalle/alpaca-gpt4 # local or huggingface repo
type: alpaca # format from earlier
sequence_len: 2048 # max token length / prompt
```
- loading
```yaml
load_in_4bit: true
load_in_8bit: true
bf16: true # require >=ampere
fp16: true
tf32: true # require >=ampere
```
Note: Repo does not do 4-bit quantization.
- lora
```yaml
adapter: lora # qlora or leave blank for full finetune
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
```
<details>
<summary>All yaml options</summary>
```yaml
# this is the huggingface model that contains *.pt, *.safetensors, or *.bin files
# this can also be a relative path to a model on disk
base_model: ./llama-7b-hf
# you can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
base_model_ignore_patterns:
# if the base_model repo on hf hub doesn't include configuration .json files,
# you can set that here, or leave this empty to default to base_model
base_model_config: ./llama-7b-hf
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
model_type: AutoModelForCausalLM
# Corresponding tokenizer for the model AutoTokenizer is a good choice
tokenizer_type: AutoTokenizer
# Trust remote code for untrusted source
trust_remote_code:
# whether you are training a 4-bit GPTQ quantized model
gptq: true
gptq_groupsize: 128 # group size
gptq_model_v1: false # v1 or v2
# this will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
load_in_8bit: true
# use bitsandbytes 4 bit
load_in_4bit:
# Use CUDA bf16
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
# Use CUDA fp16
fp16: true
# Use CUDA tf32
tf32: true # require >=ampere
# a list of one or more datasets to finetune the model with
datasets:
# this can be either a hf dataset, or relative path
- path: vicgalle/alpaca-gpt4
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
type: alpaca # format OR format:prompt_style (chat/instruct)
data_files: # path to source data files
shards: # number of shards to split data into
# axolotl attempts to save the dataset as an arrow after packing the data together so
# subsequent training attempts load faster, relative path
dataset_prepared_path: data/last_run_prepared
# push prepared dataset to hub
push_dataset_to_hub: # repo path
# whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
# required to be true when used in combination with `push_dataset_to_hub`
hf_use_auth_token: # boolean
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc
val_set_size: 0.04
# Num shards for whole dataset
dataset_shard_num:
# Index of shard to use for whole dataset
dataset_shard_idx:
# the maximum length of an input to train with, this should typically be less than 2048
# as most models have a token/context limit of 2048
sequence_len: 2048
# max sequence length to concatenate training samples together up to
# inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
max_packed_sequence_len: 1024
# if you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
adapter: lora
# if you already have a lora model trained that you want to load, put that here
# lora hyperparameters
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
- q_proj
- v_proj
# - k_proj
# - o_proj
# - gate_proj
# - down_proj
# - up_proj
lora_target_linear: # if true, will target all linear layers
lora_modules_to_save:
# - embed_tokens
# - lm_head
lora_out_dir:
lora_fan_in_fan_out: false
# wandb configuration if you're using it
wandb_mode:
wandb_project:
wandb_watch:
wandb_run_id:
wandb_log_model: # 'checkpoint'
# where to save the finished model to
output_dir: ./completed-model
# training hyperparameters
batch_size: 8
micro_batch_size: 2
eval_batch_size: 2
num_epochs: 3
warmup_steps: 100
learning_rate: 0.00003
logging_steps:
# whether to mask out or include the human's prompt from the training labels
train_on_inputs: false
# don't use this, leads to wonky training (according to someone on the internet)
group_by_length: false
# does not work with current implementation of 4-bit LoRA
gradient_checkpointing: false
# stop training after this many evaluation losses have increased in a row
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
early_stopping_patience: 3
# specify a scheduler and kwargs to use with the optimizer
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
lr_scheduler_kwargs:
# for one_cycle optim
lr_div_factor: # learning rate div factor
# for log_sweep optim
log_sweep_min_lr:
log_sweep_max_lr:
# specify optimizer
optimizer:
# specify weight decay
weight_decay:
# whether to use xformers attention patch https://github.com/facebookresearch/xformers:
xformers_attention:
# whether to use flash attention patch https://github.com/HazyResearch/flash-attention:
flash_attention: # require a100 for llama
# resume from a specific checkpoint dir
resume_from_checkpoint:
# if resume_from_checkpoint isn't set and you simply want it to start where it left off
# be careful with this being turned on between different models
auto_resume_from_checkpoints: false
# don't mess with this, it's here for accelerate and torchrun
local_rank:
# add or change special tokens
special_tokens:
# bos_token: "<s>"
# eos_token: "</s>"
# unk_token: "<unk>"
# add extra tokens
tokens:
# FSDP
fsdp:
fsdp_config:
# Deepspeed
deepspeed:
# Path to torch distx for optim 'adamw_anyprecision'
torchdistx_path:
# Set padding for data collator to 'longest'
collator_pad_to_longest:
# Debug mode
debug:
# Seed
seed:
# Allow overwrite yml config using from cli
strict:
```
</details>
### Accelerate
Configure accelerate
```bash
accelerate config
# Edit manually
# nano ~/.cache/huggingface/accelerate/default_config.yaml
```
### Train
Run
```bash
accelerate launch scripts/finetune.py configs/your_config.yml
```
### Inference
Pass the appropriate flag to the train command:
- Pretrained LORA:
```bash
--inference --lora_model_dir ./completed-model
```
- Full weights finetune:
```bash
--inference --base_model ./completed-model
```
### Merge LORA to base
Add below flag to train command above
```bash
--merge_lora --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False
```
## Common Errors π§°
> Cuda out of memory
Please reduce any below
- `micro_batch_size`
- `eval_batch_size`
- `sequence_len`
> RuntimeError: expected scalar type Float but found Half
Try set `fp16: true`
> NotImplementedError: No operator found for `memory_efficient_attention_forward` ...
Try to turn off xformers.
## Need help? πββοΈ
Join our [Discord server](https://discord.gg/HhrNrHJPRb) where we can help you
## Contributing π€
Bugs? Please check for open issue else create a new [Issue](https://github.com/OpenAccess-AI-Collective/axolotl/issues/new).
PRs are **greatly welcome**!
Please run below to setup env
```bash
pip3 install -r requirements-dev.txt -r requirements-tests.txt
pre-commit install
# test
pytest tests/
```
|