Nanobit commited on
Commit
9083910
·
1 Parent(s): 8552218

Update lora config

Browse files
Files changed (1) hide show
  1. README.md +7 -2
README.md CHANGED
@@ -134,7 +134,7 @@ See sample configs in [configs](configs) folder or [examples](examples) for quic
134
 
135
  - lora
136
  ```yaml
137
- adapter: lora # blank for full finetune
138
  lora_r: 8
139
  lora_alpha: 16
140
  lora_dropout: 0.05
@@ -185,6 +185,8 @@ datasets:
185
  # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
186
  type: alpaca
187
  data_files: # path to source data files
 
 
188
 
189
  # axolotl attempts to save the dataset as an arrow after packing the data together so
190
  # subsequent training attempts load faster, relative path
@@ -201,7 +203,7 @@ sequence_len: 2048
201
  # inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
202
  max_packed_sequence_len: 1024
203
 
204
- # if you want to use lora, leave blank to train all parameters in original model
205
  adapter: lora
206
  # if you already have a lora model trained that you want to load, put that here
207
  # lora hyperparameters
@@ -293,6 +295,9 @@ torchdistx_path:
293
 
294
  # Debug mode
295
  debug:
 
 
 
296
  ```
297
 
298
  </details>
 
134
 
135
  - lora
136
  ```yaml
137
+ adapter: lora # qlora or leave blank for full finetune
138
  lora_r: 8
139
  lora_alpha: 16
140
  lora_dropout: 0.05
 
185
  # The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
186
  type: alpaca
187
  data_files: # path to source data files
188
+ shards: # true if use subset data. make sure to set `shards` param also
189
+ shards: # number of shards to split dataset into
190
 
191
  # axolotl attempts to save the dataset as an arrow after packing the data together so
192
  # subsequent training attempts load faster, relative path
 
203
  # inspired by StackLLaMA. see https://huggingface.co/blog/stackllama#supervised-fine-tuning
204
  max_packed_sequence_len: 1024
205
 
206
+ # if you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
207
  adapter: lora
208
  # if you already have a lora model trained that you want to load, put that here
209
  # lora hyperparameters
 
295
 
296
  # Debug mode
297
  debug:
298
+
299
+ # Seed
300
+ seed:
301
  ```
302
 
303
  </details>