File size: 23,017 Bytes
4c0eddb eea2731 2bb0b78 6045345 2bb0b78 6045345 488a67d 2bb0b78 8d43785 2809f3f 6045345 37293dc 4ea9a66 6045345 37293dc 6045345 37293dc 6045345 37293dc 6045345 cf68153 1365073 6045345 37293dc 6045345 cf68153 37293dc 1365073 37293dc ce34d64 6045345 fc2d6be 2e22404 6045345 553a86b 2e22404 553a86b 6045345 ce34d64 2809f3f 6045345 a1f9850 6045345 4a17a4c cb7cd34 392dfd9 cb7cd34 6045345 1d5ab84 1c33eb8 1d5ab84 ce34d64 37293dc ce34d64 607a4d3 a1f9850 1d5ab84 6045345 1d5ab84 553a86b 6045345 553a86b 6045345 553a86b 2cfe9e9 553a86b 2cfe9e9 6045345 cb7cd34 6045345 a4f1241 6045345 37293dc 88089e8 37293dc 6045345 9bdd30c 2bb0b78 9bdd30c 88089e8 9bdd30c 88089e8 9bdd30c 6045345 88089e8 6045345 2bc1a5b 37293dc 2bc1a5b 88089e8 8d43785 392dfd9 e8aacfb 2e56203 2cfe9e9 392dfd9 2e56203 2cfe9e9 1d5ab84 4ea9a66 1d5ab84 2e56203 ce34d64 2e56203 4ea9a66 6045345 ce34d64 6045345 2e56203 6045345 1d5ab84 b46bc02 ce34d64 b46bc02 2e56203 b46bc02 1d5ab84 1365073 ce34d64 1365073 2e56203 1365073 1d5ab84 1365073 ce34d64 1365073 2e56203 1365073 1d5ab84 a12fb0a ce34d64 a12fb0a 2e56203 a12fb0a 1d5ab84 6045345 ce34d64 6045345 2e56203 6045345 1d5ab84 6045345 1d5ab84 6045345 2e56203 6045345 1d5ab84 6045345 1d5ab84 6045345 2e56203 6045345 1d5ab84 6045345 ce34d64 6045345 2e56203 6045345 1d5ab84 cf68153 2e56203 cf68153 6045345 aac4b76 b1f4f7a aac4b76 2bb0b78 fe28543 2bb0b78 6045345 b1f4f7a 6045345 1d5ab84 553a86b 1d5ab84 ce34d64 6045345 aa3c3f9 ce34d64 37293dc 392dfd9 aa3c3f9 2809f3f 4a17a4c aa3c3f9 1d5ab84 aa3c3f9 a1f9850 aa3c3f9 cb7cd34 392dfd9 cb7cd34 aa3c3f9 1d5ab84 1c33eb8 1d5ab84 553a86b 98a6781 1d5ab84 ce34d64 b832a0a ce34d64 607a4d3 a1f9850 1d5ab84 553a86b aa3c3f9 553a86b 2809f3f 553a86b 2809f3f ce34d64 aa3c3f9 1d5ab84 aa3c3f9 b1f4f7a cb7cd34 aa3c3f9 0d28df0 2bb0b78 0d28df0 3392270 cb7cd34 0d28df0 aa3c3f9 553a86b aa3c3f9 1d5ab84 553a86b 1d5ab84 ce34d64 37293dc ce34d64 aa3c3f9 4a17a4c aa3c3f9 097d367 553a86b 2bc1a5b 37293dc 2bc1a5b 097d367 ab5cd28 2bb0b78 fc2d6be 2bb0b78 ab5cd28 6045345 488a67d eea2731 553a86b eea2731 488a67d 0c6f928 eea2731 0c6f928 eea2731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
"""Module containing data utilities"""
import functools
import hashlib
import logging
from hashlib import md5
from pathlib import Path
from typing import Tuple, Union
import torch
from datasets import (
Dataset,
DatasetDict,
concatenate_datasets,
load_dataset,
load_from_disk,
)
from huggingface_hub import hf_hub_download
from transformers import PreTrainedTokenizerBase
from axolotl.datasets import ConstantLengthDataset, TokenizedPromptDataset
from axolotl.prompt_strategies import load
from axolotl.prompt_tokenizers import (
AlpacaMultipleChoicePromptTokenizingStrategy,
AlpacaPromptTokenizingStrategy,
AlpacaReflectionPTStrategy,
CompletionPromptTokenizingStrategy,
GPTeacherPromptTokenizingStrategy,
JeopardyPromptTokenizingStrategy,
OpenAssistantPromptTokenizingStrategy,
ShareGPTPromptTokenizingStrategy,
SummarizeTLDRPromptTokenizingStrategy,
)
from axolotl.prompters import (
AlpacaPrompter,
CompletionPrompter,
GPTeacherPrompter,
JeopardyPrompter,
MultipleChoiceConcisePrompter,
MultipleChoiceExplainPrompter,
ReflectAlpacaPrompter,
ShareGPTPrompter,
SummarizeTLDRPrompter,
)
from axolotl.utils.distributed import is_main_process, zero_first
from axolotl.utils.trainer import (
calculate_total_num_steps,
process_datasets_for_packing,
)
LOG = logging.getLogger("axolotl")
DEFAULT_DATASET_PREPARED_PATH = "last_run_prepared"
def prepare_dataset(cfg, tokenizer):
if not cfg.pretraining_dataset:
train_dataset, eval_dataset = load_prepare_datasets(
tokenizer, cfg, DEFAULT_DATASET_PREPARED_PATH
)
else:
train_dataset = load_pretraining_dataset(
cfg.pretraining_dataset,
tokenizer,
max_tokens=cfg.sequence_len,
seed=cfg.seed or 42,
)
# /static-proxy?url=https%3A%2F%2Fdiscuss.huggingface.co%2Ft%2Fhow-to-use-huggingface-trainer-streaming-datasets-without-wrapping-it-with-torchdatas-iterablewrapper%2F25230%3C%2Fspan%3E
train_dataset = train_dataset.with_format("torch")
eval_dataset = None
with zero_first(is_main_process()):
train_dataset, eval_dataset = process_datasets_for_packing(
cfg, train_dataset, eval_dataset
)
if cfg.max_steps:
total_num_steps = min(
calculate_total_num_steps(cfg, train_dataset, tokenizer), cfg.max_steps
)
LOG.info(f"Maximum number of steps set at {total_num_steps}")
else:
total_num_steps = calculate_total_num_steps(cfg, train_dataset, tokenizer)
return train_dataset, eval_dataset, total_num_steps
def load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
) -> DatasetDict:
tokenizer_name = tokenizer.__class__.__name__
ds_hash = str(
md5( # nosec
(
str(cfg.sequence_len)
+ "@"
+ "|".join(
sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
)
+ "|"
+ tokenizer_name
).encode("utf-8")
).hexdigest()
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
dataset = None
use_auth_token = cfg.hf_use_auth_token
try:
if cfg.push_dataset_to_hub:
dataset = load_dataset(
f"{cfg.push_dataset_to_hub}/{ds_hash}",
use_auth_token=use_auth_token,
)
dataset = dataset["train"]
except Exception: # pylint: disable=broad-except # nosec
pass
if dataset:
...
elif any(prepared_ds_path.glob("*")):
LOG.info(f"Loading prepared dataset from disk at {prepared_ds_path}...")
dataset = load_from_disk(str(prepared_ds_path))
LOG.info("Prepared dataset loaded from disk...")
else:
LOG.info(f"Unable to find prepared dataset in {prepared_ds_path}")
LOG.info("Loading raw datasets...")
if cfg.seed:
seed = cfg.seed
else:
LOG.info("No seed provided, using default seed of 42")
seed = 42
datasets = []
# pylint: disable=invalid-name
for d in cfg.datasets:
ds: Union[Dataset, DatasetDict] = None
ds_from_hub = False
try:
load_dataset(
d.path,
name=d.name,
streaming=True,
use_auth_token=use_auth_token,
)
ds_from_hub = True
except FileNotFoundError:
pass
# prefer local dataset, even if hub exists
local_path = Path(d.path)
if local_path.exists():
if local_path.is_dir():
# TODO dirs with arrow or parquet files could be loaded with `load_from_disk`
ds = load_dataset(
d.path,
name=d.name,
data_files=d.data_files,
streaming=False,
split=None,
)
elif local_path.is_file():
ds = load_dataset(
"json",
name=d.name,
data_files=d.path,
streaming=False,
split=None,
)
else:
raise ValueError(
"unhandled dataset load: local path exists, but is neither a directory or a file"
)
elif ds_from_hub:
ds = load_dataset(
d.path,
name=d.name,
streaming=False,
data_files=d.data_files,
use_auth_token=use_auth_token,
)
else:
fp = hf_hub_download(
repo_id=d.path,
repo_type="dataset",
filename=d.data_files,
)
ds = load_dataset(
"json", name=d.name, data_files=fp, streaming=False, split=None
)
if not ds:
raise ValueError("unhandled dataset load")
# support for using a subset of the data
if d.shards:
if "train" in ds:
ds = ds.shuffle(seed=seed)["train"].shard(
num_shards=d.shards, index=0
)
else:
ds = ds.shuffle(seed=seed).shard(num_shards=d.shards, index=0)
d_type = d.type
d_type_split = d_type.split(":")
d_base_type = d_type_split[0]
d_prompt_style = d_type_split[1] if len(d_type_split) > 1 else None
if "train" in ds:
ds = ds["train"]
if ds_strategy := load(d.type, tokenizer, cfg):
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "alpaca":
ds_strategy = AlpacaPromptTokenizingStrategy(
AlpacaPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "explainchoice":
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
MultipleChoiceExplainPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "concisechoice":
ds_strategy = AlpacaMultipleChoicePromptTokenizingStrategy(
MultipleChoiceConcisePrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "summarizetldr":
ds_strategy = SummarizeTLDRPromptTokenizingStrategy(
SummarizeTLDRPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "jeopardy":
ds_strategy = JeopardyPromptTokenizingStrategy(
JeopardyPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "oasst":
ds_strategy = OpenAssistantPromptTokenizingStrategy(
AlpacaPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "gpteacher":
ds_strategy = GPTeacherPromptTokenizingStrategy(
GPTeacherPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "reflection":
ds_strategy = AlpacaReflectionPTStrategy(
ReflectAlpacaPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "sharegpt":
ds_strategy = ShareGPTPromptTokenizingStrategy(
ShareGPTPrompter(d_prompt_style),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
elif d_base_type == "completion":
ds_strategy = CompletionPromptTokenizingStrategy(
CompletionPrompter(),
tokenizer,
cfg.train_on_inputs,
cfg.sequence_len,
)
ds_wrapper = TokenizedPromptDataset(ds_strategy, ds)
datasets.append(ds_wrapper)
else:
suffix = ""
if ":load_" in d.type:
suffix = f" Did you mean {d.type.replace(':load_', '.load_')}?"
LOG.error(f"unhandled prompt tokenization strategy: {d.type}. {suffix}")
raise ValueError(
f"unhandled prompt tokenization strategy: {d.type} {suffix}"
)
LOG.info("merging datasets")
dataset = concatenate_datasets(datasets)
if len(datasets) > 1:
LOG.info("shuffle merged datasets")
dataset = dataset.shuffle(seed=seed)
if cfg.local_rank == 0:
LOG.info(f"Saving merged prepared dataset to disk... {prepared_ds_path}")
dataset.save_to_disk(prepared_ds_path)
if cfg.push_dataset_to_hub:
LOG.info(
f"Saving merged prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
)
return dataset
def load_prepare_datasets(
tokenizer: PreTrainedTokenizerBase,
cfg,
default_dataset_prepared_path,
) -> Tuple[Dataset, Dataset]:
max_packed_sequence_len = (
cfg.max_packed_sequence_len if cfg.max_packed_sequence_len else cfg.sequence_len
)
max_packed_sequence_len = min(
max_packed_sequence_len, cfg.sequence_len
) # make sure we don't accidentally set it larger than sequence_len
tokenizer_name = tokenizer.__class__.__name__
if cfg.max_packed_sequence_len is not None:
# see if we can go ahead and load the stacked dataset
seed = f"@{str(cfg.seed)}" if cfg.seed else ""
ds_hash = str(
md5( # nosec
(
str(cfg.sequence_len)
+ "@"
+ str(max_packed_sequence_len)
+ seed
+ "|".join(
sorted([f"{d.path}:{d.type}:{d.shards}" for d in cfg.datasets])
)
+ "|"
+ tokenizer_name
).encode("utf-8")
).hexdigest()
)
prepared_ds_path = (
Path(cfg.dataset_prepared_path) / ds_hash
if cfg.dataset_prepared_path
else Path(default_dataset_prepared_path) / ds_hash
)
dataset = None
use_auth_token = cfg.hf_use_auth_token
try:
if cfg.push_dataset_to_hub:
LOG.info(
f"Checking for packed prepared dataset from hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset = load_dataset(
f"{cfg.push_dataset_to_hub}/{ds_hash}",
use_auth_token=use_auth_token,
)
dataset = dataset["train"]
except Exception: # pylint: disable=broad-except # nosec
pass
if dataset:
...
elif any(prepared_ds_path.glob("*")):
LOG.info(
f"Loading prepared packed dataset from disk at {prepared_ds_path}..."
)
dataset = load_from_disk(str(prepared_ds_path))
LOG.info("Prepared packed dataset loaded from disk...")
if cfg.push_dataset_to_hub:
LOG.info(
f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}", private=True
)
else:
dataset = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
)
if cfg.seed:
dataset = dataset.shuffle(seed=cfg.seed)
constant_len_dataset = ConstantLengthDataset(
tokenizer,
[dataset],
seq_length=max_packed_sequence_len,
)
LOG.info(f"packing master dataset to len: {cfg.max_packed_sequence_len}")
dataset = Dataset.from_list(list(constant_len_dataset))
# filter out bad data
# TODO convert to dataset.filter(...)
dataset = Dataset.from_list(
[
d
for d in dataset
if len(d["input_ids"]) <= cfg.sequence_len
and len(d["input_ids"]) > 0
and len(d["input_ids"]) == len(d["attention_mask"])
and len(d["input_ids"]) == len(d["labels"])
]
)
if cfg.local_rank == 0:
LOG.info(
f"Saving packed prepared dataset to disk... {prepared_ds_path}"
)
dataset.save_to_disk(prepared_ds_path)
if cfg.push_dataset_to_hub:
LOG.info(
f"Saving packed prepared dataset with push_to_hub... {cfg.push_dataset_to_hub}/{ds_hash}"
)
dataset.push_to_hub(
f"{cfg.push_dataset_to_hub}/{ds_hash}",
private=True,
)
else:
dataset = load_tokenized_prepared_datasets(
tokenizer, cfg, default_dataset_prepared_path
)
if cfg.dataset_shard_num and cfg.dataset_shard_idx is not None:
LOG.info(
f"Using index #{cfg.dataset_shard_idx} of {cfg.dataset_shard_num} shards"
)
dataset = dataset.shard(
num_shards=cfg.dataset_shard_num,
index=cfg.dataset_shard_idx,
)
if cfg.val_set_size:
# ensure we end up with the same fingerprint by doing rank0 first and being able to cache
to_hash_train = (
dataset._fingerprint # pylint: disable=protected-access
+ "|"
+ str(cfg.val_set_size)
+ "|"
+ "train"
+ "|"
+ str(cfg.seed or 42)
)
to_hash_test = (
dataset._fingerprint # pylint: disable=protected-access
+ "|"
+ str(cfg.val_set_size)
+ "|"
+ "test"
+ "|"
+ str(cfg.seed or 42)
)
train_fingerprint = hashlib.md5(
to_hash_train.encode(), usedforsecurity=False
).hexdigest()
test_fingerprint = hashlib.md5(
to_hash_test.encode(), usedforsecurity=False
).hexdigest()
with zero_first(is_main_process()):
dataset = dataset.train_test_split(
test_size=cfg.val_set_size,
shuffle=False,
seed=cfg.seed or 42,
train_new_fingerprint=train_fingerprint,
test_new_fingerprint=test_fingerprint,
)
train_dataset = dataset["train"]
eval_dataset = dataset["test"]
else:
train_dataset = dataset
eval_dataset = None
return train_dataset, eval_dataset
def encode_pretraining(tokenizer, max_tokens, examples):
res = tokenizer(
examples["text"],
truncation=True,
max_length=max_tokens - 2,
add_special_tokens=True,
)
# Convert to PyTorch tensors
input_ids = [torch.tensor(seq) for seq in res["input_ids"]]
attention_mask = [torch.tensor(seq) for seq in res["attention_mask"]]
new_input_ids = []
new_attention_mask = []
# Append EOS and PAD tokens to input_ids, and correct attention_mask
for i, _ in enumerate(input_ids):
input_ids[i] = torch.cat(
(
input_ids[i],
torch.tensor([tokenizer.eos_token_id, tokenizer.pad_token_id]),
),
dim=0,
)
attention_mask[i] = torch.cat((attention_mask[i], torch.tensor([1, 0])), dim=0)
# Concatenate tokens so that their lengths are less than max_tokens
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
for ids, mask in zip(input_ids, attention_mask):
if buffer_input_ids.numel() == max_tokens:
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
elif buffer_input_ids.numel() + ids.numel() <= max_tokens:
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
else:
buffer_input_ids = torch.cat(
(
buffer_input_ids,
torch.full(
(max_tokens - buffer_input_ids.numel(),),
tokenizer.pad_token_id,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
torch.full(
(max_tokens - buffer_attention_mask.numel(),),
0,
dtype=torch.long,
),
),
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
buffer_input_ids = torch.tensor([], dtype=torch.long)
buffer_attention_mask = torch.tensor([], dtype=torch.long)
buffer_input_ids = torch.cat((buffer_input_ids, ids), dim=0)
buffer_attention_mask = torch.cat((buffer_attention_mask, mask), dim=0)
if buffer_input_ids.numel() > 0: # for any leftover tokens
while buffer_input_ids.numel() < max_tokens: # make all sequences equal in size
buffer_input_ids = torch.cat(
(
buffer_input_ids,
torch.full(
(max_tokens - buffer_input_ids.numel(),),
tokenizer.pad_token_id,
dtype=torch.long,
),
),
dim=0,
)
buffer_attention_mask = torch.cat(
(
buffer_attention_mask,
torch.full(
(max_tokens - buffer_attention_mask.numel(),),
0,
dtype=torch.long,
),
),
dim=0,
)
new_input_ids.append(buffer_input_ids)
new_attention_mask.append(buffer_attention_mask)
ret = {
"input_ids": [seq.tolist() for seq in new_input_ids],
"labels": [seq.tolist() for seq in new_input_ids],
"attention_mask": [seq.tolist() for seq in new_attention_mask],
}
LOG.debug(len(ret["input_ids"]))
return ret
def load_pretraining_dataset(path, tokenizer, max_tokens=2048, seed=42):
encode = functools.partial(encode_pretraining, tokenizer, max_tokens)
dataset = load_dataset(path, streaming=True, split="train")
dataset = dataset.shuffle(seed=seed, buffer_size=10_000)
# TODO dynamically figure out which columns/features to remove
dataset = dataset.map(encode, batched=True, remove_columns=["text", "meta"])
return dataset
|