Smart_LLM / app.py
vilarin's picture
Update app.py
0961bc7 verified
raw
history blame
3.46 kB
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "THUDM/glm-4-9b-chat"
MODEL_ID2 = "THUDM/glm-4-9b-chat-1m"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODELS.split("/")[-1]
TITLE = "<h1><center>GLM-4-9B</center></h1>"
DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></center></h3>'
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model = AutoModelForCausalLM.from_pretrained(
MODELS,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).to(0).eval()
tokenizer = AutoTokenizer.from_pretrained(MODELS,trust_remote_code=True)
@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
generate_kwargs = dict(
input_ids=input_ids,
max_length=2500,
max_new_tokens=max_new_tokens,
do_sample=True,
top_k=1,
temperature=temperature,
repetition_penalty=1.2,
)
with torch.no_grad():
outputs = model.generate(**generate_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
results = tokenizer.decode(outputs[0], skip_special_tokens=True)
return results
chatbot = gr.Chatbot(height=450)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()