Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,463 Bytes
51a7d9e 22f5f54 51a7d9e edb9e8a 51a7d9e 22f5f54 1ec2e60 51a7d9e 22f5f54 51a7d9e 1ec2e60 51a7d9e 22f5f54 51a7d9e f663115 51a7d9e fd6304d 51a7d9e fd6304d 3b9cb87 22f5f54 3b9cb87 639e063 edb9e8a 022d2fb f663115 51a7d9e 22f5f54 51a7d9e 0961bc7 f663115 0961bc7 f663115 51a7d9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import os
from threading import Thread
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = "THUDM/glm-4-9b-chat"
MODEL_ID2 = "THUDM/glm-4-9b-chat-1m"
MODELS = os.environ.get("MODELS")
MODEL_NAME = MODELS.split("/")[-1]
TITLE = "<h1><center>GLM-4-9B</center></h1>"
DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODELS}">{MODEL_NAME}</a></center></h3>'
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model = AutoModelForCausalLM.from_pretrained(
MODELS,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True,
).to(0).eval()
tokenizer = AutoTokenizer.from_pretrained(MODELS,trust_remote_code=True)
@spaces.GPU
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message})
print(f"Conversation is -\n{conversation}")
input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device)
generate_kwargs = dict(
input_ids=input_ids,
max_length=2500,
max_new_tokens=max_new_tokens,
do_sample=True,
top_k=1,
temperature=temperature,
repetition_penalty=1.2,
)
with torch.no_grad():
outputs = model.generate(**generate_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
results = tokenizer.decode(outputs[0], skip_special_tokens=True)
return results
chatbot = gr.Chatbot(height=450)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
examples=[
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."],
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."],
["Tell me a random fun fact about the Roman Empire."],
["Show me a code snippet of a website's sticky header in CSS and JavaScript."],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()
|