mboss's picture
Update inference to latest
4d8c3d6
raw
history blame
6.48 kB
import argparse
import os
from contextlib import nullcontext
import torch
from PIL import Image
from tqdm import tqdm
from transparent_background import Remover
from spar3d.models.mesh import QUAD_REMESH_AVAILABLE, TRIANGLE_REMESH_AVAILABLE
from spar3d.system import SPAR3D
from spar3d.utils import foreground_crop, get_device, remove_background
def check_positive(value):
ivalue = int(value)
if ivalue <= 0:
raise argparse.ArgumentTypeError("%s is an invalid positive int value" % value)
return ivalue
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"image", type=str, nargs="+", help="Path to input image(s) or folder."
)
parser.add_argument(
"--device",
default=get_device(),
type=str,
help=f"Device to use. If no CUDA/MPS-compatible device is found, the baking will fail. Default: '{get_device()}'",
)
parser.add_argument(
"--pretrained-model",
default="stabilityai/stable-point-aware-3d",
type=str,
help="Path to the pretrained model. Could be either a huggingface model id is or a local path. Default: 'stabilityai/stable-point-aware-3d'",
)
parser.add_argument(
"--foreground-ratio",
default=1.3,
type=float,
help="Ratio of the foreground size to the image size. Only used when --no-remove-bg is not specified. Default: 0.85",
)
parser.add_argument(
"--output-dir",
default="output/",
type=str,
help="Output directory to save the results. Default: 'output/'",
)
parser.add_argument(
"--texture-resolution",
default=1024,
type=int,
help="Texture atlas resolution. Default: 1024",
)
parser.add_argument(
"--low-vram-mode",
action="store_true",
help=(
"Use low VRAM mode. SPAR3D consumes 10.5GB of VRAM by default. "
"This mode will reduce the VRAM consumption to roughly 7GB but in exchange "
"the model will be slower. Default: False"
),
)
remesh_choices = ["none"]
if TRIANGLE_REMESH_AVAILABLE:
remesh_choices.append("triangle")
if QUAD_REMESH_AVAILABLE:
remesh_choices.append("quad")
parser.add_argument(
"--remesh_option",
choices=remesh_choices,
default="none",
help="Remeshing option",
)
if TRIANGLE_REMESH_AVAILABLE or QUAD_REMESH_AVAILABLE:
parser.add_argument(
"--reduction_count_type",
choices=["keep", "vertex", "faces"],
default="keep",
help="Vertex count type",
)
parser.add_argument(
"--target_count",
type=check_positive,
help="Selected target count.",
default=2000,
)
parser.add_argument(
"--batch_size", default=1, type=int, help="Batch size for inference"
)
args = parser.parse_args()
# Ensure args.device contains cuda
devices = ["cuda", "mps", "cpu"]
if not any(args.device in device for device in devices):
raise ValueError("Invalid device. Use cuda, mps or cpu")
output_dir = args.output_dir
os.makedirs(output_dir, exist_ok=True)
device = args.device
if not (torch.cuda.is_available() or torch.backends.mps.is_available()):
device = "cpu"
print("Device used: ", device)
model = SPAR3D.from_pretrained(
args.pretrained_model,
config_name="config.yaml",
weight_name="model.safetensors",
low_vram_mode=args.low_vram_mode,
)
model.to(device)
model.eval()
bg_remover = Remover(device=device)
images = []
idx = 0
for image_path in args.image:
def handle_image(image_path, idx):
image = remove_background(
Image.open(image_path).convert("RGBA"), bg_remover
)
image = foreground_crop(image, args.foreground_ratio)
os.makedirs(os.path.join(output_dir, str(idx)), exist_ok=True)
image.save(os.path.join(output_dir, str(idx), "input.png"))
images.append(image)
if os.path.isdir(image_path):
image_paths = [
os.path.join(image_path, f)
for f in os.listdir(image_path)
if f.endswith((".png", ".jpg", ".jpeg"))
]
for image_path in image_paths:
handle_image(image_path, idx)
idx += 1
else:
handle_image(image_path, idx)
idx += 1
vertex_count = (
-1
if args.reduction_count_type == "keep"
else (
args.target_count
if args.reduction_count_type == "vertex"
else args.target_count // 2
)
)
for i in tqdm(range(0, len(images), args.batch_size)):
image = images[i : i + args.batch_size]
if torch.cuda.is_available():
torch.cuda.reset_peak_memory_stats()
with torch.no_grad():
with (
torch.autocast(device_type=device, dtype=torch.bfloat16)
if "cuda" in device
else nullcontext()
):
mesh, glob_dict = model.run_image(
image,
bake_resolution=args.texture_resolution,
remesh=args.remesh_option,
vertex_count=vertex_count,
return_points=True,
)
if torch.cuda.is_available():
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
elif torch.backends.mps.is_available():
print(
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
)
if len(image) == 1:
out_mesh_path = os.path.join(output_dir, str(i), "mesh.glb")
mesh.export(out_mesh_path, include_normals=True)
out_points_path = os.path.join(output_dir, str(i), "points.ply")
glob_dict["point_clouds"][0].export(out_points_path)
else:
for j in range(len(mesh)):
out_mesh_path = os.path.join(output_dir, str(i + j), "mesh.glb")
mesh[j].export(out_mesh_path, include_normals=True)
out_points_path = os.path.join(output_dir, str(i + j), "points.ply")
glob_dict["point_clouds"][j].export(out_points_path)